IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005026.html
   My bibliography  Save this article

Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data

Author

Listed:
  • Yuheng Lu
  • Christina S Leslie

Abstract

Recent technologies like AGO CLIP sequencing and CLASH enable direct transcriptome-wide identification of AGO binding and miRNA target sites, but the most widely used miRNA target prediction algorithms do not exploit these data. Here we use discriminative learning on AGO CLIP and CLASH interactions to train a novel miRNA target prediction model. Our method combines two SVM classifiers, one to predict miRNA-mRNA duplexes and a second to learn a binding model of AGO’s local UTR sequence preferences and positional bias in 3’UTR isoforms. The duplex SVM model enables the prediction of non-canonical target sites and more accurately resolves miRNA interactions from AGO CLIP data than previous methods. The binding model is trained using a multi-task strategy to learn context-specific and common AGO sequence preferences. The duplex and common AGO binding models together outperform existing miRNA target prediction algorithms on held-out binding data. Open source code is available at https://bitbucket.org/leslielab/chimiric.Author Summary: MicroRNAs (or miRNAs) are a family of small RNA molecules that guide Argonaute (AGO) to specific target sites within mRNAs and regulate numerous biological processes in normal cells and in disease. Despite years of research, the principles of miRNA targeting are incompletely understood, and computational miRNA target prediction methods still achieve only modest performance. Most previous target prediction work has been based on indirect measurements of miRNA regulation, such as mRNA expression changes upon miRNA perturbation, without mapping actual binding sites, which limits accuracy and precludes discovery of more subtle miRNA targeting rules. The recent introduction of CLIP (UV crosslinking followed by immunoprecipitation) sequencing technologies enables direct identification of interactions between miRNAs and mRNAs. However, the data generated from these assays has not been fully exploited in target prediction. Here, we present a model to predict miRNA-mRNA interactions solely based on their sequences, using new technologies to map AGO and miRNA binding interactions with machine learning techniques. Our algorithm produces more accurate predictions than state-of-the-art methods based on indirect measurements. Moreover, interpretation of the learned model reveals novel features of miRNA-mRNA interactions, including potential cooperativity with specific RNA-binding proteins.

Suggested Citation

  • Yuheng Lu & Christina S Leslie, 2016. "Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-18, July.
  • Handle: RePEc:plo:pcbi00:1005026
    DOI: 10.1371/journal.pcbi.1005026
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005026
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005026&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daehyun Baek & Judit Villén & Chanseok Shin & Fernando D. Camargo & Steven P. Gygi & David P. Bartel, 2008. "The impact of microRNAs on protein output," Nature, Nature, vol. 455(7209), pages 64-71, September.
    2. Matthias Selbach & Björn Schwanhäusser & Nadine Thierfelder & Zhuo Fang & Raya Khanin & Nikolaus Rajewsky, 2008. "Widespread changes in protein synthesis induced by microRNAs," Nature, Nature, vol. 455(7209), pages 58-63, September.
    3. Michael J. Moore & Troels K. H. Scheel & Joseph M. Luna & Christopher Y. Park & John J. Fak & Eiko Nishiuchi & Charles M. Rice & Robert B. Darnell, 2015. "miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity," Nature Communications, Nature, vol. 6(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alicia Hurtado & Irene Mota-Gómez & Miguel Lao & Francisca M. Real & Johanna Jedamzick & Miguel Burgos & Darío G. Lupiáñez & Rafael Jiménez & Francisco J. Barrionuevo, 2024. "Complete male-to-female sex reversal in XY mice lacking the miR-17~92 cluster," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Shuangmei Tian & Ziyu Zhao & Beibei Ren & Degeng Wang, 2024. "Non-Linear Relationship between MiRNA Regulatory Activity and Binding Site Counts on Target mRNAs," Data, MDPI, vol. 9(10), pages 1-13, September.
    3. Adam A Margolin & Shao-En Ong & Monica Schenone & Robert Gould & Stuart L Schreiber & Steven A Carr & Todd R Golub, 2009. "Empirical Bayes Analysis of Quantitative Proteomics Experiments," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-15, October.
    4. Chikako Ragan & Michael Zuker & Mark A Ragan, 2011. "Quantitative Prediction of miRNA-mRNA Interaction Based on Equilibrium Concentrations," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    5. Wenliang Zhu & Xuan Kan, 2014. "Neural Network Cascade Optimizes MicroRNA Biomarker Selection for Nasopharyngeal Cancer Prognosis," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    6. Parawee Lekprasert & Michael Mayhew & Uwe Ohler, 2011. "Assessing the Utility of Thermodynamic Features for microRNA Target Prediction under Relaxed Seed and No Conservation Requirements," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-13, June.
    7. Zhdanov, Vladimir P., 2010. "ncRNA-mediated bistability in the synthesis of hundreds of distinct mRNAs and proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 887-890.
    8. Ray M Marín & Jiří Vaníček, 2012. "Optimal Use of Conservation and Accessibility Filters in MicroRNA Target Prediction," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    9. Youjia Hua & Shiwei Duan & Andrea E Murmann & Niels Larsen & Jørgen Kjems & Anders H Lund & Marcus E Peter, 2011. "miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-16, October.
    10. Yasemin Oztemur & Tufan Bekmez & Alp Aydos & Isik G Yulug & Betul Bozkurt & Bala Gur Dedeoglu, 2015. "A Ranking-Based Meta-Analysis Reveals Let-7 Family as a Meta-Signature for Grade Classification in Breast Cancer," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    11. David Lyon & Maria Angeles Castillejo & Christiana Staudinger & Wolfram Weckwerth & Stefanie Wienkoop & Volker Egelhofer, 2014. "Automated Protein Turnover Calculations from 15N Partial Metabolic Labeling LC/MS Shotgun Proteomics Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    12. T.V., Binil Shyam & Sharma, Rati, 2024. "mRNA translation from a unidirectional traffic perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    13. Wenshu Zeng & Lu Yue & Kim S. W. Lam & Wenxin Zhang & Wai-Kin So & Erin H. Y. Tse & Tom H. Cheung, 2022. "CPEB1 directs muscle stem cell activation by reprogramming the translational landscape," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. W.L. Bai & Y.L. Dang & R.H. Yin & R.L. Yin & W.Q. Jiang & Z.Y. Wang & Y.B. Zhu & J.J. Wang & Z.H. Zhao & G.B. Luo, 2016. "Combination of let-7d-5p, miR-26a-5p, and miR-15a-5p is suitable normalizer for studying microRNA expression in skin tissue of Liaoning cashmere goat during hair follicle cycle," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 61(3), pages 99-107.
    15. Peng Wang & Shangwei Ning & Qianghu Wang & Ronghong Li & Jingrun Ye & Zuxianglan Zhao & Yan Li & Teng Huang & Xia Li, 2013. "mirTarPri: Improved Prioritization of MicroRNA Targets through Incorporation of Functional Genomics Data," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    16. Panagiotis Alexiou & Manolis Maragkakis & Giorgio L Papadopoulos & Victor A Simmosis & Lin Zhang & Artemis G Hatzigeorgiou, 2010. "The DIANA-mirExTra Web Server: From Gene Expression Data to MicroRNA Function," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-7, February.
    17. Ramkrishna Mitra & Sanghamitra Bandyopadhyay, 2011. "MultiMiTar: A Novel Multi Objective Optimization based miRNA-Target Prediction Method," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-13, September.
    18. Jana Zecha & Wassim Gabriel & Ria Spallek & Yun-Chien Chang & Julia Mergner & Mathias Wilhelm & Florian Bassermann & Bernhard Kuster, 2022. "Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Urmo Võsa & Tõnu Esko & Silva Kasela & Tarmo Annilo, 2015. "Altered Gene Expression Associated with microRNA Binding Site Polymorphisms," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
    20. Sarah Willkomm & Leonhard Jakob & Kevin Kramm & Veronika Graus & Julia Neumeier & Gunter Meister & Dina Grohmann, 2022. "Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.