IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001090.html
   My bibliography  Save this article

Quantitative Prediction of miRNA-mRNA Interaction Based on Equilibrium Concentrations

Author

Listed:
  • Chikako Ragan
  • Michael Zuker
  • Mark A Ragan

Abstract

MicroRNAs (miRNAs) suppress gene expression by forming a duplex with a target messenger RNA (mRNA), blocking translation or initiating cleavage. Computational approaches have proven valuable for predicting which mRNAs can be targeted by a given miRNA, but currently available prediction methods do not address the extent of duplex formation under physiological conditions. Some miRNAs can at low concentrations bind to target mRNAs, whereas others are unlikely to bind within a physiologically relevant concentration range. Here we present a novel approach in which we find potential target sites on mRNA that minimize the calculated free energy of duplex formation, compute the free energy change involved in unfolding these sites, and use these energies to estimate the extent of duplex formation at specified initial concentrations of both species. We compare our predictions to experimentally confirmed miRNA-mRNA interactions (and non-interactions) in Drosophila melanogaster and in human. Although our method does not predict whether the targeted mRNA is degraded and/or its translation to protein inhibited, our quantitative estimates generally track experimentally supported results, indicating that this approach can be used to predict whether an interaction occurs at specified concentrations. Our approach offers a more-quantitative understanding of post-translational regulation in different cell types, tissues, and developmental conditions.Author Summary: MicroRNAs (miRNAs) are small RNA molecules that regulate post-transcriptional gene expression by binding messenger RNAs (mRNAs), blocking their role in translation or marking them for degradation. To date, computational methods for predicting mRNA targets have assumed an all-or-nothing mode of miRNA-mRNA interaction. Here we introduce a computational approach that predicts the degree of interaction, taking into account initial miRNA and mRNA concentrations. Using this approach, we can predict whether specified interactions are likely to be functionally relevant within physiologically relevant concentration ranges.

Suggested Citation

  • Chikako Ragan & Michael Zuker & Mark A Ragan, 2011. "Quantitative Prediction of miRNA-mRNA Interaction Based on Equilibrium Concentrations," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
  • Handle: RePEc:plo:pcbi00:1001090
    DOI: 10.1371/journal.pcbi.1001090
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001090
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001090&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanli Wang & Stefan Juranek & Haitao Li & Gang Sheng & Thomas Tuschl & Dinshaw J. Patel, 2008. "Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex," Nature, Nature, vol. 456(7224), pages 921-926, December.
    2. Matthias Selbach & Björn Schwanhäusser & Nadine Thierfelder & Zhuo Fang & Raya Khanin & Nikolaus Rajewsky, 2008. "Widespread changes in protein synthesis induced by microRNAs," Nature, Nature, vol. 455(7209), pages 58-63, September.
    3. Daehyun Baek & Judit Villén & Chanseok Shin & Fernando D. Camargo & Steven P. Gygi & David P. Bartel, 2008. "The impact of microRNAs on protein output," Nature, Nature, vol. 455(7209), pages 64-71, September.
    4. Brenda J. Reinhart & Frank J. Slack & Michael Basson & Amy E. Pasquinelli & Jill C. Bettinger & Ann E. Rougvie & H. Robert Horvitz & Gary Ruvkun, 2000. "The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans," Nature, Nature, vol. 403(6772), pages 901-906, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parawee Lekprasert & Michael Mayhew & Uwe Ohler, 2011. "Assessing the Utility of Thermodynamic Features for microRNA Target Prediction under Relaxed Seed and No Conservation Requirements," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-13, June.
    2. Alicia Hurtado & Irene Mota-Gómez & Miguel Lao & Francisca M. Real & Johanna Jedamzick & Miguel Burgos & Darío G. Lupiáñez & Rafael Jiménez & Francisco J. Barrionuevo, 2024. "Complete male-to-female sex reversal in XY mice lacking the miR-17~92 cluster," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Adam A Margolin & Shao-En Ong & Monica Schenone & Robert Gould & Stuart L Schreiber & Steven A Carr & Todd R Golub, 2009. "Empirical Bayes Analysis of Quantitative Proteomics Experiments," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-15, October.
    4. Wenliang Zhu & Xuan Kan, 2014. "Neural Network Cascade Optimizes MicroRNA Biomarker Selection for Nasopharyngeal Cancer Prognosis," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    5. Yuheng Lu & Christina S Leslie, 2016. "Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-18, July.
    6. Yonghua Wang & Yan Li & Zhi Ma & Wei Yang & Chunzhi Ai, 2010. "Mechanism of MicroRNA-Target Interaction: Molecular Dynamics Simulations and Thermodynamics Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    7. Zhdanov, Vladimir P., 2010. "ncRNA-mediated bistability in the synthesis of hundreds of distinct mRNAs and proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 887-890.
    8. Ray M Marín & Jiří Vaníček, 2012. "Optimal Use of Conservation and Accessibility Filters in MicroRNA Target Prediction," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    9. Youjia Hua & Shiwei Duan & Andrea E Murmann & Niels Larsen & Jørgen Kjems & Anders H Lund & Marcus E Peter, 2011. "miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-16, October.
    10. Yasemin Oztemur & Tufan Bekmez & Alp Aydos & Isik G Yulug & Betul Bozkurt & Bala Gur Dedeoglu, 2015. "A Ranking-Based Meta-Analysis Reveals Let-7 Family as a Meta-Signature for Grade Classification in Breast Cancer," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    11. David Lyon & Maria Angeles Castillejo & Christiana Staudinger & Wolfram Weckwerth & Stefanie Wienkoop & Volker Egelhofer, 2014. "Automated Protein Turnover Calculations from 15N Partial Metabolic Labeling LC/MS Shotgun Proteomics Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    12. T.V., Binil Shyam & Sharma, Rati, 2024. "mRNA translation from a unidirectional traffic perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    13. Akiko Doi & Gianmarco D. Suarez & Rita Droste & H. Robert Horvitz, 2023. "A DEAD-box helicase drives the partitioning of a pro-differentiation NAB protein into nuclear foci," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Wenshu Zeng & Lu Yue & Kim S. W. Lam & Wenxin Zhang & Wai-Kin So & Erin H. Y. Tse & Tom H. Cheung, 2022. "CPEB1 directs muscle stem cell activation by reprogramming the translational landscape," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. W.L. Bai & Y.L. Dang & R.H. Yin & R.L. Yin & W.Q. Jiang & Z.Y. Wang & Y.B. Zhu & J.J. Wang & Z.H. Zhao & G.B. Luo, 2016. "Combination of let-7d-5p, miR-26a-5p, and miR-15a-5p is suitable normalizer for studying microRNA expression in skin tissue of Liaoning cashmere goat during hair follicle cycle," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 61(3), pages 99-107.
    16. Peng Wang & Shangwei Ning & Qianghu Wang & Ronghong Li & Jingrun Ye & Zuxianglan Zhao & Yan Li & Teng Huang & Xia Li, 2013. "mirTarPri: Improved Prioritization of MicroRNA Targets through Incorporation of Functional Genomics Data," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    17. Xiaohua Yao & Yue Wang & Youhua Yao & Likun An & Yixiong Bai & Xin Li & Kunlun Wu & Youming Qiao, 2021. "Use of gene family analysis to discover argonaut (AGO) genes for increasing the resistance of Tibetan hull-less barley to leaf stripe disease," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 57(3), pages 226-239.
    18. Xiangkai Zhen & Xiaolong Xu & Le Ye & Song Xie & Zhijie Huang & Sheng Yang & Yanhui Wang & Jinyu Li & Feng Long & Songying Ouyang, 2024. "Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Panagiotis Alexiou & Manolis Maragkakis & Giorgio L Papadopoulos & Victor A Simmosis & Lin Zhang & Artemis G Hatzigeorgiou, 2010. "The DIANA-mirExTra Web Server: From Gene Expression Data to MicroRNA Function," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-7, February.
    20. Ramkrishna Mitra & Sanghamitra Bandyopadhyay, 2011. "MultiMiTar: A Novel Multi Objective Optimization based miRNA-Target Prediction Method," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.