IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0017911.html
   My bibliography  Save this article

GOBO: Gene Expression-Based Outcome for Breast Cancer Online

Author

Listed:
  • Markus Ringnér
  • Erik Fredlund
  • Jari Häkkinen
  • Åke Borg
  • Johan Staaf

Abstract

Microarray-based gene expression analysis holds promise of improving prognostication and treatment decisions for breast cancer patients. However, the heterogeneity of breast cancer emphasizes the need for validation of prognostic gene signatures in larger sample sets stratified into relevant subgroups. Here, we describe a multifunctional user-friendly online tool, GOBO (http://co.bmc.lu.se/gobo), allowing a range of different analyses to be performed in an 1881-sample breast tumor data set, and a 51-sample breast cancer cell line set, both generated on Affymetrix U133A microarrays. GOBO supports a wide range of applications including: 1) rapid assessment of gene expression levels in subgroups of breast tumors and cell lines, 2) identification of co-expressed genes for creation of potential metagenes, 3) association with outcome for gene expression levels of single genes, sets of genes, or gene signatures in multiple subgroups of the 1881-sample breast cancer data set. The design and implementation of GOBO facilitate easy incorporation of additional query functions and applications, as well as additional data sets irrespective of tumor type and array platform.

Suggested Citation

  • Markus Ringnér & Erik Fredlund & Jari Häkkinen & Åke Borg & Johan Staaf, 2011. "GOBO: Gene Expression-Based Outcome for Breast Cancer Online," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
  • Handle: RePEc:plo:pone00:0017911
    DOI: 10.1371/journal.pone.0017911
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017911
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0017911&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0017911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles M. Perou & Therese Sørlie & Michael B. Eisen & Matt van de Rijn & Stefanie S. Jeffrey & Christian A. Rees & Jonathan R. Pollack & Douglas T. Ross & Hilde Johnsen & Lars A. Akslen & Øystein Flu, 2000. "Molecular portraits of human breast tumours," Nature, Nature, vol. 406(6797), pages 747-752, August.
    2. Andy J. Minn & Gaorav P. Gupta & Peter M. Siegel & Paula D. Bos & Weiping Shu & Dilip D. Giri & Agnes Viale & Adam B. Olshen & William L. Gerald & Joan Massagué, 2005. "Genes that mediate breast cancer metastasis to lung," Nature, Nature, vol. 436(7050), pages 518-524, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoumeh Moslemi & Ehsan Sohrabi & Nemamali Azadi & Ali Zekri & Hamed Afkhami & Mansoor Khaledi & Ehsan Razmara, 2020. "Expression Analysis of EEPD1 and MUS81 Genes in Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 29(4), pages 22556-22564, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R Joseph Bender & Feilim Mac Gabhann, 2013. "Expression of VEGF and Semaphorin Genes Define Subgroups of Triple Negative Breast Cancer," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-15, May.
    2. Herman M J Sontrop & Wim F J Verhaegh & Marcel J T Reinders & Perry D Moerland, 2011. "An Evaluation Protocol for Subtype-Specific Breast Cancer Event Prediction," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-12, July.
    3. Yang, Xi & Hoadley, Katherine A. & Hannig, Jan & Marron, J.S., 2023. "Jackstraw inference for AJIVE data integration," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    4. Manish G & Anil Kumar Badana & Rama Rao Malla, 2017. "Emerging Diagnostic and Prognostic Biomarkers of Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(3), pages 561-565, August.
    5. Jacob Elnaggar & Fern Tsien & Lucio Miele & Chindo Hicks & Clayton Yates & Melisa Davis, 2019. "An Integrative Genomics Approach for Associating Genetic Susceptibility with the Tumor Immune Microenvironment in Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 15(1), pages 1-12, February.
    6. Egashira, Kento & Yata, Kazuyoshi & Aoshima, Makoto, 2024. "Asymptotic properties of hierarchical clustering in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    7. María Elena Martínez & Jonathan T Unkart & Li Tao & Candyce H Kroenke & Richard Schwab & Ian Komenaka & Scarlett Lin Gomez, 2017. "Prognostic significance of marital status in breast cancer survival: A population-based study," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    8. Yishai Shimoni, 2018. "Association between expression of random gene sets and survival is evident in multiple cancer types and may be explained by sub-classification," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-15, February.
    9. Marcin Pilarczyk & Mehdi Fazel-Najafabadi & Michal Kouril & Behrouz Shamsaei & Juozas Vasiliauskas & Wen Niu & Naim Mahi & Lixia Zhang & Nicholas A. Clark & Yan Ren & Shana White & Rashid Karim & Huan, 2022. "Connecting omics signatures and revealing biological mechanisms with iLINCS," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Xianhui Ruan & Wei Yan & Minghui Cao & Ray Anthony M. Daza & Miranda Y. Fong & Kaifu Yang & Jun Wu & Xuxiang Liu & Melanie Palomares & Xiwei Wu & Arthur Li & Yuan Chen & Rahul Jandial & Nicholas C. Sp, 2024. "Breast cancer cell-secreted miR-199b-5p hijacks neurometabolic coupling to promote brain metastasis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Junhee Seok & Ronald W Davis & Wenzhong Xiao, 2015. "A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    12. Qing Qu & Yan Mao & Xiao-chun Fei & Kun-wei Shen, 2013. "The Impact of Androgen Receptor Expression on Breast Cancer Survival: A Retrospective Study and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    13. Bourret, Pascale & Keating, Peter & Cambrosio, Alberto, 2011. "Regulating diagnosis in post-genomic medicine: Re-aligning clinical judgment?," Social Science & Medicine, Elsevier, vol. 73(6), pages 816-824, September.
    14. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Yoo-Ah Kim & Stefan Wuchty & Teresa M Przytycka, 2011. "Identifying Causal Genes and Dysregulated Pathways in Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    16. Won Jun Lee & Sang Cheol Kim & Jung-Ho Yoon & Sang Jun Yoon & Johan Lim & You-Sun Kim & Sung Won Kwon & Jeong Hill Park, 2016. "Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    17. Pauliina M. Munne & Lahja Martikainen & Iiris Räty & Kia Bertula & Nonappa & Janika Ruuska & Hanna Ala-Hongisto & Aino Peura & Babette Hollmann & Lilya Euro & Kerim Yavuz & Linda Patrikainen & Maria S, 2021. "Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    18. Radhakrishnan Nagarajan & Marco Scutari, 2013. "Impact of Noise on Molecular Network Inference," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    19. Marron, J.S., 2017. "Big Data in context and robustness against heterogeneity," Econometrics and Statistics, Elsevier, vol. 2(C), pages 73-80.
    20. Deepak Poduval & Zuzana Sichmanova & Anne Hege Straume & Per Eystein Lønning & Stian Knappskog, 2020. "The novel microRNAs hsa-miR-nov7 and hsa-miR-nov3 are over-expressed in locally advanced breast cancer," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-23, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0017911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.