IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54706-z.html
   My bibliography  Save this article

Tumor-derived miR-9-5p-loaded EVs regulate cholesterol homeostasis to promote breast cancer liver metastasis in mice

Author

Listed:
  • Mei-Xin Li

    (Wuhan University)

  • Sheng Hu

    (Wuhan University)

  • He-Hua Lei

    (Chinese Academy of Sciences (CAS)
    University of Chinese Academy of Sciences)

  • Meng Yuan

    (Wuhan University)

  • Xu Li

    (Wuhan University)

  • Wen-Kui Hou

    (Wuhan University)

  • Xiang-Jie Huang

    (Zhejiang University)

  • Bing-Wen Xiao

    (Wuhan University)

  • Teng-Xiang Yu

    (Wuhan University)

  • Xiao-Hui Zhang

    (Wuhan University)

  • Xiao-Ting Wu

    (Wuhan University)

  • Wen-Qiang Jing

    (Wuhan University)

  • Hyeon-Jeong Lee

    (Zhejiang University)

  • Juan-Juan Li

    (Renmin Hospital of Wuhan University)

  • Da Fu

    (Shanghai Jiaotong University School of Medicine)

  • Li-Min Zhang

    (Chinese Academy of Sciences (CAS)
    University of Chinese Academy of Sciences)

  • Wei Yan

    (Wuhan University)

Abstract

Cancer cells secrete extracellular vesicles (EV) encapsulating bioactive cargoes to facilitate inter-organ communication in vivo and are emerging as critical mediators of tumor progression and metastasis, a condition which is often accompanied by a dysregulated cholesterol metabolism. Whether EVs are involved in the control of cholesterol homeostasis during tumor metastasis is still undefined and warrant further investigation. Here, we find that breast cancer-derived exosomal miR-9-5p induces the expression of HMGCR and CH25H, two enzymes involved in cholesterol synthesis and the conversion of 25-hydroxycholesterol from cholesterol by targeting INSIG1, INSIG2 and ATF3 genes in the liver. Notably, in vivo miR-9-5p antagomir treatment and genetic CH25H ablation prevents tumor metastasis in a mouse model of breast cancer. Thus, our findings reveal the regulatory mechanism of tumor-derived miR-9-5p in liver metastasis by linking oxysterol metabolism and Kupffer cell polarization, shedding light on future applications for cancer diagnosis and treatment.

Suggested Citation

  • Mei-Xin Li & Sheng Hu & He-Hua Lei & Meng Yuan & Xu Li & Wen-Kui Hou & Xiang-Jie Huang & Bing-Wen Xiao & Teng-Xiang Yu & Xiao-Hui Zhang & Xiao-Ting Wu & Wen-Qiang Jing & Hyeon-Jeong Lee & Juan-Juan Li, 2024. "Tumor-derived miR-9-5p-loaded EVs regulate cholesterol homeostasis to promote breast cancer liver metastasis in mice," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54706-z
    DOI: 10.1038/s41467-024-54706-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54706-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54706-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi-Yu Chen & Jing-Yu Ge & Si-Yuan Zhu & Zhi-Ming Shao & Ke-Da Yu, 2022. "Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Stefanie K. Wculek & Ilaria Malanchi, 2015. "Neutrophils support lung colonization of metastasis-initiating breast cancer cells," Nature, Nature, vol. 528(7582), pages 413-417, December.
    3. Abhishek Tyagi & Sambad Sharma & Kerui Wu & Shih-Ying Wu & Fei Xing & Yin Liu & Dan Zhao & Ravindra Pramod Deshpande & Ralph B. D’Agostino & Kounosuke Watabe, 2021. "Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    4. Andy J. Minn & Gaorav P. Gupta & Peter M. Siegel & Paula D. Bos & Weiping Shu & Dilip D. Giri & Agnes Viale & Adam B. Olshen & William L. Gerald & Joan Massagué, 2005. "Genes that mediate breast cancer metastasis to lung," Nature, Nature, vol. 436(7050), pages 518-524, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiaoqi Sui & Xi Zhang & Chao Chen & Jinghua Tang & Jiehai Yu & Weihao Li & Kai Han & Wu Jiang & Leen Liao & Lingheng Kong & Yuan Li & Zhenlin Hou & Chi Zhou & Chenzhi Zhang & Linjie Zhang & Binyi Xiao, 2022. "Inflammation promotes resistance to immune checkpoint inhibitors in high microsatellite instability colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Junho Lee & Donggu Lee & Sean Lawler & Yangjin Kim, 2021. "Role of neutrophil extracellular traps in regulation of lung cancer invasion and metastasis: Structural insights from a computational model," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-29, February.
    3. Xianhui Ruan & Wei Yan & Minghui Cao & Ray Anthony M. Daza & Miranda Y. Fong & Kaifu Yang & Jun Wu & Xuxiang Liu & Melanie Palomares & Xiwei Wu & Arthur Li & Yuan Chen & Rahul Jandial & Nicholas C. Sp, 2024. "Breast cancer cell-secreted miR-199b-5p hijacks neurometabolic coupling to promote brain metastasis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Ariane F. Busso-Lopes & Leandro X. Neves & Guilherme A. Câmara & Daniela C. Granato & Marco Antônio M. Pretti & Henry Heberle & Fábio M. S. Patroni & Jamile Sá & Sami Yokoo & César Rivera & Romênia R., 2022. "Connecting multiple microenvironment proteomes uncovers the biology in head and neck cancer," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    5. Charlotte R. Bell & Victoria S. Pelly & Agrin Moeini & Shih-Chieh Chiang & Eimear Flanagan & Christian P. Bromley & Christopher Clark & Charles H. Earnshaw & Maria A. Koufaki & Eduardo Bonavita & Sant, 2022. "Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Jeff Yat-Fai Chung & Philip Chiu-Tsun Tang & Max Kam-Kwan Chan & Vivian Weiwen Xue & Xiao-Ru Huang & Calvin Sze-Hang Ng & Dongmei Zhang & Kam-Tong Leung & Chun-Kwok Wong & Tin-Lap Lee & Eric W-F Lam &, 2023. "Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Won Jun Lee & Sang Cheol Kim & Jung-Ho Yoon & Sang Jun Yoon & Johan Lim & You-Sun Kim & Sung Won Kwon & Jeong Hill Park, 2016. "Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    8. R Joseph Bender & Feilim Mac Gabhann, 2013. "Expression of VEGF and Semaphorin Genes Define Subgroups of Triple Negative Breast Cancer," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-15, May.
    9. Veronika Bandara & Jade Foeng & Batjargal Gundsambuu & Todd S. Norton & Silvana Napoli & Dylan J. McPeake & Timona S. Tyllis & Elaheh Rohani-Rad & Caitlin Abbott & Stuart J. Mills & Lih Y. Tan & Emma , 2023. "Pre-clinical validation of a pan-cancer CAR-T cell immunotherapy targeting nfP2X7," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Seyedeh Fatemeh Razavipour & Hyunho Yoon & Kibeom Jang & Minsoon Kim & Hend M. Nawara & Amir Bagheri & Wei-Chi Huang & Miyoung Shin & Dekuang Zhao & Zhiqun Zhou & Derek Boven & Karoline Briegel & Llui, 2024. "C-terminally phosphorylated p27 activates self-renewal driver genes to program cancer stem cell expansion, mammary hyperplasia and cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Xun Yuan & Mingsheng Zhang & Hua Wu & Hanxiao Xu & Na Han & Qian Chu & Shiying Yu & Yuan Chen & Kongming Wu, 2015. "Expression of Notch1 Correlates with Breast Cancer Progression and Prognosis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-13, June.
    12. Markus Ringnér & Erik Fredlund & Jari Häkkinen & Åke Borg & Johan Staaf, 2011. "GOBO: Gene Expression-Based Outcome for Breast Cancer Online," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    13. Xiaomei Li & Lin Liu & Gregory J Goodall & Andreas Schreiber & Taosheng Xu & Jiuyong Li & Thuc D Le, 2020. "A novel single-cell based method for breast cancer prognosis," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-20, August.
    14. Zhiyuan Zheng & Ya-nan Li & Shanfen Jia & Mengting Zhu & Lijuan Cao & Min Tao & Jingting Jiang & Shenghua Zhan & Yongjing Chen & Ping-Jin Gao & Weiguo Hu & Ying Wang & Changshun Shao & Yufang Shi, 2021. "Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    15. Isabel Tundidor & Marta Seijo-Vila & Sandra Blasco-Benito & María Rubert-Hernández & Sandra Adámez & Clara Andradas & Sara Manzano & Isabel Álvarez-López & Cristina Sarasqueta & María Villa-Morales & , 2023. "Identification of fatty acid amide hydrolase as a metastasis suppressor in breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Jing Wang & Ramon Ocadiz-Ruiz & Matthew S. Hall & Grace G. Bushnell & Sophia M. Orbach & Joseph T. Decker & Ravi M. Raghani & Yining Zhang & Aaron H. Morris & Jacqueline S. Jeruss & Lonnie D. Shea, 2023. "A synthetic metastatic niche reveals antitumor neutrophils drive breast cancer metastatic dormancy in the lungs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Shu Zhang & Wen Fang & Siqi Zhou & Dongming Zhu & Ruidong Chen & Xin Gao & Zhuojin Li & Yao Fu & Yixuan Zhang & Fa Yang & Jing Zhao & Hao Wu & Pin Wang & Yonghua Shen & Shanshan Shen & Guifang Xu & Le, 2023. "Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer liver metastasis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Xi Zhao & Einar Andreas Rødland & Therese Sørlie & Bjørn Naume & Anita Langerød & Arnoldo Frigessi & Vessela N Kristensen & Anne-Lise Børresen-Dale & Ole Christian Lingjærde, 2011. "Combining Gene Signatures Improves Prediction of Breast Cancer Survival," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-15, March.
    19. Parker Hilary S. & Leek Jeffrey T., 2012. "The practical effect of batch on genomic prediction," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-22, April.
    20. Herman M J Sontrop & Wim F J Verhaegh & Marcel J T Reinders & Perry D Moerland, 2011. "An Evaluation Protocol for Subtype-Specific Breast Cancer Event Prediction," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-12, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54706-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.