IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0074250.html
   My bibliography  Save this article

SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis

Author

Listed:
  • Raul Aguirre-Gamboa
  • Hugo Gomez-Rueda
  • Emmanuel Martínez-Ledesma
  • Antonio Martínez-Torteya
  • Rafael Chacolla-Huaringa
  • Alberto Rodriguez-Barrientos
  • José G Tamez-Peña
  • Victor Treviño

Abstract

Validation of multi-gene biomarkers for clinical outcomes is one of the most important issues for cancer prognosis. An important source of information for virtual validation is the high number of available cancer datasets. Nevertheless, assessing the prognostic performance of a gene expression signature along datasets is a difficult task for Biologists and Physicians and also time-consuming for Statisticians and Bioinformaticians. Therefore, to facilitate performance comparisons and validations of survival biomarkers for cancer outcomes, we developed SurvExpress, a cancer-wide gene expression database with clinical outcomes and a web-based tool that provides survival analysis and risk assessment of cancer datasets. The main input of SurvExpress is only the biomarker gene list. We generated a cancer database collecting more than 20,000 samples and 130 datasets with censored clinical information covering tumors over 20 tissues. We implemented a web interface to perform biomarker validation and comparisons in this database, where a multivariate survival analysis can be accomplished in about one minute. We show the utility and simplicity of SurvExpress in two biomarker applications for breast and lung cancer. Compared to other tools, SurvExpress is the largest, most versatile, and quickest free tool available. SurvExpress web can be accessed in http://bioinformatica.mty.itesm.mx/SurvExpress (a tutorial is included). The website was implemented in JSP, JavaScript, MySQL, and R.

Suggested Citation

  • Raul Aguirre-Gamboa & Hugo Gomez-Rueda & Emmanuel Martínez-Ledesma & Antonio Martínez-Torteya & Rafael Chacolla-Huaringa & Alberto Rodriguez-Barrientos & José G Tamez-Peña & Victor Treviño, 2013. "SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-9, September.
  • Handle: RePEc:plo:pone00:0074250
    DOI: 10.1371/journal.pone.0074250
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074250
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0074250&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0074250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick J. Heagerty & Yingye Zheng, 2005. "Survival Model Predictive Accuracy and ROC Curves," Biometrics, The International Biometric Society, vol. 61(1), pages 92-105, March.
    2. Andrea H. Bild & Guang Yao & Jeffrey T. Chang & Quanli Wang & Anil Potti & Dawn Chasse & Mary-Beth Joshi & David Harpole & Johnathan M. Lancaster & Andrew Berchuck & John A. Olson & Jeffrey R. Marks &, 2006. "Oncogenic pathway signatures in human cancers as a guide to targeted therapies," Nature, Nature, vol. 439(7074), pages 353-357, January.
    3. Markus Ringnér & Erik Fredlund & Jari Häkkinen & Åke Borg & Johan Staaf, 2011. "GOBO: Gene Expression-Based Outcome for Breast Cancer Online," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    4. Jan Budczies & Frederick Klauschen & Bruno V Sinn & Balázs Győrffy & Wolfgang D Schmitt & Silvia Darb-Esfahani & Carsten Denkert, 2012. "Cutoff Finder: A Comprehensive and Straightforward Web Application Enabling Rapid Biomarker Cutoff Optimization," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose-Gerardo Tamez-Peña & Juan-Andrés Rodriguez-Rojas & Hugo Gomez-Rueda & Jose-Maria Celaya-Padilla & Roxana-Alicia Rivera-Prieto & Rebeca Palacios-Corona & Margarita Garza-Montemayor & Servando Card, 2018. "Radiogenomics analysis identifies correlations of digital mammography with clinical molecular signatures in breast cancer," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junjie Su & Byung-Jun Yoon & Edward R Dougherty, 2009. "Accurate and Reliable Cancer Classification Based on Probabilistic Inference of Pathway Activity," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    2. Carey K Anders & Chaitanya R Acharya & David S Hsu & Gloria Broadwater & Katherine Garman & John A Foekens & Yi Zhang & Yixin Wang & Kelly Marcom & Jeffrey R Marks & Sayan Mukherjee & Joseph R Nevins , 2008. "Age-Specific Differences in Oncogenic Pathway Deregulation Seen in Human Breast Tumors," PLOS ONE, Public Library of Science, vol. 3(1), pages 1-8, January.
    3. Yanyuan Ma & Yuanjia Wang, 2014. "Estimating disease onset distribution functions in mutation carriers with censored mixture data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 1-23, January.
    4. Pablo Mart�nez-Camblor & Jacobo de U�a-�lvarez & Carmen D�az Corte, 2015. "Expanded renal transplantation: a competing risk model approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2539-2553, December.
    5. Verena Jabs & Karolina Edlund & Helena König & Marianna Grinberg & Katrin Madjar & Jörg Rahnenführer & Simon Ekman & Michael Bergkvist & Lars Holmberg & Katja Ickstadt & Johan Botling & Jan G Hengstle, 2017. "Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-23, November.
    6. Eun Sung Park & Ju-Seog Lee & Hyun Goo Woo & Fenghuang Zhan & Joanna H Shih & John D Shaughnessy Jr. & J Frederic Mushinski, 2007. "Heterologous Tissue Culture Expression Signature Predicts Human Breast Cancer Prognosis," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-16, January.
    7. Xinan Yang & Kelly Regan & Yong Huang & Qingbei Zhang & Jianrong Li & Tanguy Y Seiwert & Ezra E W Cohen & H Rosie Xing & Yves A Lussier, 2012. "Single Sample Expression-Anchored Mechanisms Predict Survival in Head and Neck Cancer," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-18, January.
    8. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    9. David P A Cohen & Loredana Martignetti & Sylvie Robine & Emmanuel Barillot & Andrei Zinovyev & Laurence Calzone, 2015. "Mathematical Modelling of Molecular Pathways Enabling Tumour Cell Invasion and Migration," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-29, November.
    10. Jin Sheng & Yun-Peng Yang & Yu-Xiang Ma & Tao Qin & Zhi-Huang Hu & Shao-Dong Hong & Ting Zhou & Yan Huang & Hong-Yun Zhao & Li Zhang, 2016. "Low Prognostic Nutritional Index Correlates with Worse Survival in Patients with Advanced NSCLC following EGFR-TKIs," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-12, January.
    11. Robin Van Oirbeek & Emmanuel Lesaffre, 2018. "An Investigation of the Discriminatory Ability of the Clustering Effect of the Frailty Survival Model," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(3), pages 87-98, April.
    12. Yuanjia Wang & Huaihou Chen & Runze Li & Naihua Duan & Roberto Lewis-Fernández, 2011. "Prediction-Based Structured Variable Selection through the Receiver Operating Characteristic Curves," Biometrics, The International Biometric Society, vol. 67(3), pages 896-905, September.
    13. Kevin He & Yue Wang & Xiang Zhou & Han Xu & Can Huang, 2019. "An improved variable selection procedure for adaptive Lasso in high-dimensional survival analysis," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 569-585, July.
    14. Weining Shen & Jing Ning & Ying Yuan, 2015. "A direct method to evaluate the time-dependent predictive accuracy for biomarkers," Biometrics, The International Biometric Society, vol. 71(2), pages 439-449, June.
    15. Matthias Schmid & Thomas Hielscher & Thomas Augustin & Olaf Gefeller, 2011. "A Robust Alternative to the Schemper–Henderson Estimator of Prediction Error," Biometrics, The International Biometric Society, vol. 67(2), pages 524-535, June.
    16. Ao Yuan & Mihai Giurcanu & George Luta & Ming T. Tan, 2017. "U-statistics with conditional kernels for incomplete data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 271-302, April.
    17. Dehan Kong & Joseph G. Ibrahim & Eunjee Lee & Hongtu Zhu, 2018. "FLCRM: Functional linear cox regression model," Biometrics, The International Biometric Society, vol. 74(1), pages 109-117, March.
    18. Shanshan Li & Yang Ning, 2015. "Estimation of covariate‐specific time‐dependent ROC curves in the presence of missing biomarkers," Biometrics, The International Biometric Society, vol. 71(3), pages 666-676, September.
    19. Cullen F. Goenner, 2020. "Uncertain times and early predictions of bank failure," The Financial Review, Eastern Finance Association, vol. 55(4), pages 583-601, November.
    20. P. Saha & P. J. Heagerty, 2010. "Time-Dependent Predictive Accuracy in the Presence of Competing Risks," Biometrics, The International Biometric Society, vol. 66(4), pages 999-1011, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0074250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.