IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0016168.html
   My bibliography  Save this article

From Lévy to Brownian: A Computational Model Based on Biological Fluctuation

Author

Listed:
  • Surya G Nurzaman
  • Yoshio Matsumoto
  • Yutaka Nakamura
  • Kazumichi Shirai
  • Satoshi Koizumi
  • Hiroshi Ishiguro

Abstract

Background: Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. Methodology/Principal Findings: We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Conclusions/Significance: Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.

Suggested Citation

  • Surya G Nurzaman & Yoshio Matsumoto & Yutaka Nakamura & Kazumichi Shirai & Satoshi Koizumi & Hiroshi Ishiguro, 2011. "From Lévy to Brownian: A Computational Model Based on Biological Fluctuation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
  • Handle: RePEc:plo:pone00:0016168
    DOI: 10.1371/journal.pone.0016168
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016168
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0016168&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0016168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. M. Viswanathan & Sergey V. Buldyrev & Shlomo Havlin & M. G. E. da Luz & E. P. Raposo & H. Eugene Stanley, 1999. "Optimizing the success of random searches," Nature, Nature, vol. 401(6756), pages 911-914, October.
    2. Alexander Maye & Chih-hao Hsieh & George Sugihara & Björn Brembs, 2007. "Order in Spontaneous Behavior," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-14, May.
    3. H.J. de Knegt & G.M. Hengeveld & F. van Langevelde & W.F. de Boer & K.P. Kirkman, 2007. "Patch density determines movement patterns and foraging efficiency of large herbivores," Behavioral Ecology, International Society for Behavioral Ecology, vol. 18(6), pages 1065-1072.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Juan & Xu, Yong & Ma, Shaojuan, 2019. "Realizing the transformation of logic gates in a genetic toggle system under Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 171-179.
    2. Korneev, Ivan & Zakharova, Anna & Semenov, Vladimir V., 2024. "Lévy noise-induced coherence resonance: Numerical study versus experiment," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    3. Xu, Yong & Wu, Juan & Du, Lin & Yang, Hui, 2016. "Stochastic resonance in a genetic toggle model with harmonic excitation and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 91-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    2. Qi, Jie & Rong, Zhihai, 2013. "The emergence of scaling laws search dynamics in a particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1522-1531.
    3. Stefano Focardi & Paolo Montanaro & Elena Pecchioli, 2009. "Adaptive Lévy Walks in Foraging Fallow Deer," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-6, August.
    4. Sepideh Bazazi & Frederic Bartumeus & Joseph J Hale & Iain D Couzin, 2012. "Intermittent Motion in Desert Locusts: Behavioural Complexity in Simple Environments," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-10, May.
    5. Masato S Abe & Masakazu Shimada, 2015. "Lévy Walks Suboptimal under Predation Risk," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-16, November.
    6. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    7. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    8. Ma, Brian O. & Davis, Brad H. & Gillespie, David R. & VanLaerhoven, Sherah L., 2009. "Incorporating behaviour into simple models of dispersal using the biological control agent Dicyphus hesperus," Ecological Modelling, Elsevier, vol. 220(23), pages 3271-3279.
    9. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Cody T Ross & Bruce Winterhalder, 2018. "Evidence for encounter-conditional, area-restricted search in a preliminary study of Colombian blowgun hunters," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-13, December.
    11. Pascual López-López & José Benavent-Corai & Clara García-Ripollés & Vicente Urios, 2013. "Scavengers on the Move: Behavioural Changes in Foraging Search Patterns during the Annual Cycle," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-9, January.
    12. Kin Fai Ellick Wong & Cecilia Cheng, 2013. "Predictable or Not? Individuals’ Risk Decisions Do Not Necessarily Predict Their Next Ones," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-5, February.
    13. José Ignacio Santos & María Pereda & Débora Zurro & Myrian Álvarez & Jorge Caro & José Manuel Galán & Ivan Briz i Godino, 2015. "Effect of Resource Spatial Correlation and Hunter-Fisher-Gatherer Mobility on Social Cooperation in Tierra del Fuego," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-29, April.
    14. Pauline Formaglio & Marina E. Wosniack & Raphael M. Tromer & Jaderson G. Polli & Yuri B. Matos & Hang Zhong & Ernesto P. Raposo & Marcos G. E. Luz & Rogerio Amino, 2023. "Plasmodium sporozoite search strategy to locate hotspots of blood vessel invasion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    16. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    17. LaScala-Gruenewald, Diana E. & Mehta, Rohan S. & Liu, Yu & Denny, Mark W., 2019. "Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies," Ecological Modelling, Elsevier, vol. 404(C), pages 69-82.
    18. Toman, Kellan & Voulgarakis, Nikolaos K., 2022. "Stochastic pursuit-evasion curves for foraging dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    19. Cédric Sueur & Léa Briard & Odile Petit, 2011. "Individual Analyses of Lévy Walk in Semi-Free Ranging Tonkean Macaques (Macaca tonkeana)," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-8, October.
    20. Amanda E. Martin & Trent M. Hoover & John S. Richardson, 2013. "Modeling the role of stage-structured agonistic interactions in ontogenetic habitat shifts," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(2), pages 355-365.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0016168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.