IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i6p1522-1531.html
   My bibliography  Save this article

The emergence of scaling laws search dynamics in a particle swarm optimization

Author

Listed:
  • Qi, Jie
  • Rong, Zhihai

Abstract

This paper investigates the search dynamics of a fundamental particle swarm optimization (PSO) algorithm via gathering and analyzing the data of the search area during the optimization process. The PSO algorithm exhibits a distinct performance when optimizing different functions, which induces the emergence of different search dynamics during the optimization process. The simulation results show that the performance is tightly related to the search dynamics which results from the interaction between the PSO algorithm and the landscape of the solved problems. The Lévy type scaling laws search dynamics emerges from the process in which the PSO algorithm shows good performance, while the Brownian dynamics appears after the algorithm has stagnated due to the premature convergence. The Lévy dynamics characterized by a large number of intensive local searches punctuated by long-range transfers is an indicator of good performance, which allows the algorithm to achieve an efficient balance between exploration and exploitation so as to improve the search efficiency.

Suggested Citation

  • Qi, Jie & Rong, Zhihai, 2013. "The emergence of scaling laws search dynamics in a particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1522-1531.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:6:p:1522-1531
    DOI: 10.1016/j.physa.2012.11.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112010199
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.11.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. M. Viswanathan & Sergey V. Buldyrev & Shlomo Havlin & M. G. E. da Luz & E. P. Raposo & H. Eugene Stanley, 1999. "Optimizing the success of random searches," Nature, Nature, vol. 401(6756), pages 911-914, October.
    2. Izquierdo, J. & Montalvo, I. & Pérez, R. & Fuertes, V.S., 2009. "Forecasting pedestrian evacuation times by using swarm intelligence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1213-1220.
    3. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    4. Zeng, An & Zhou, Dong & Hu, Yanqing & Fan, Ying & Di, Zengru, 2011. "Dynamics on spatial networks and the effect of distance coarse graining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3962-3969.
    5. Upadhyaya, Arpita & Rieu, Jean-Paul & Glazier, James A. & Sawada, Yasuji, 2001. "Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 293(3), pages 549-558.
    6. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    7. Viswanathan, G.M & Afanasyev, V & Buldyrev, Sergey V & Havlin, Shlomo & da Luz, M.G.E & Raposo, E.P & Stanley, H.Eugene, 2000. "Lévy flights in random searches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(1), pages 1-12.
    8. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    9. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    10. H.J. de Knegt & G.M. Hengeveld & F. van Langevelde & W.F. de Boer & K.P. Kirkman, 2007. "Patch density determines movement patterns and foraging efficiency of large herbivores," Behavioral Ecology, International Society for Behavioral Ecology, vol. 18(6), pages 1065-1072.
    11. Wu, Jieyu & Shao, Xinyu & Li, Jinhang & Huang, Gang, 2012. "Scale-free properties of information flux networks in genetic algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1692-1701.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Wen-Bo & Gao, Yang & Liu, Chen & Zheng, Zheng & Wang, Zhen, 2015. "Adequate is better: particle swarm optimization with limited-information," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 832-838.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    2. Ndibatya, Innocent & Booysen, M.J., 2021. "Characterizing the movement patterns of minibus taxis in Kampala's paratransit system," Journal of Transport Geography, Elsevier, vol. 92(C).
    3. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    4. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    5. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    6. LaScala-Gruenewald, Diana E. & Mehta, Rohan S. & Liu, Yu & Denny, Mark W., 2019. "Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies," Ecological Modelling, Elsevier, vol. 404(C), pages 69-82.
    7. Qianqian Liu & Qun Wang, 2017. "A comparative study on uncooperative search models in survivor search and rescue," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 843-857, November.
    8. Stefano Focardi & Paolo Montanaro & Elena Pecchioli, 2009. "Adaptive Lévy Walks in Foraging Fallow Deer," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-6, August.
    9. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    10. Surya G Nurzaman & Yoshio Matsumoto & Yutaka Nakamura & Kazumichi Shirai & Satoshi Koizumi & Hiroshi Ishiguro, 2011. "From Lévy to Brownian: A Computational Model Based on Biological Fluctuation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
    11. Alexander Maye & Chih-hao Hsieh & George Sugihara & Björn Brembs, 2007. "Order in Spontaneous Behavior," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-14, May.
    12. Xiang Liu & Feicheng Ma, 2013. "Transfer and distribution of knowledge creation activities of bio-scientists in knowledge space," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 299-310, April.
    13. E P Raposo & F Bartumeus & M G E da Luz & P J Ribeiro-Neto & T A Souza & G M Viswanathan, 2011. "How Landscape Heterogeneity Frames Optimal Diffusivity in Searching Processes," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-8, November.
    14. Sepideh Bazazi & Frederic Bartumeus & Joseph J Hale & Iain D Couzin, 2012. "Intermittent Motion in Desert Locusts: Behavioural Complexity in Simple Environments," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-10, May.
    15. Tomassini, Marco, 2016. "Lévy flights in neutral fitness landscapes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 163-171.
    16. Danish A Ahmed & Ali R Ansari & Mudassar Imran & Kamal Dingle & Michael B Bonsall, 2021. "Mechanistic modelling of COVID-19 and the impact of lockdowns on a short-time scale," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-20, October.
    17. Baronchelli, Andrea & Radicchi, Filippo, 2013. "Lévy flights in human behavior and cognition," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 101-105.
    18. Boschetti, Fabio & Vanderklift, Mathew A., 2015. "How the movement characteristics of large marine predators influence estimates of their abundance," Ecological Modelling, Elsevier, vol. 313(C), pages 223-236.
    19. Filippo Radicchi & Andrea Baronchelli & Luís A N Amaral, 2012. "Rationality, Irrationality and Escalating Behavior in Lowest Unique Bid Auctions," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-8, January.
    20. Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Modeling the Chinese language as an evolving network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 268-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:6:p:1522-1531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.