IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0006587.html
   My bibliography  Save this article

Adaptive Lévy Walks in Foraging Fallow Deer

Author

Listed:
  • Stefano Focardi
  • Paolo Montanaro
  • Elena Pecchioli

Abstract

Background: Lévy flights are random walks, the step lengths of which come from probability distributions with heavy power-law tails, such that clusters of short steps are connected by rare long steps. Lévy walks maximise search efficiency of mobile foragers. Recently, several studies raised some concerns about the reliability of the statistical analysis used in previous analyses. Further, it is unclear whether Lévy walks represent adaptive strategies or emergent properties determined by the interaction between foragers and resource distribution. Thus two fundamental questions still need to be addressed: the presence of Lévy walks in the wild and whether or not they represent a form of adaptive behaviour. Methodology/Principal Findings: We studied 235 paths of solitary and clustered (i.e. foraging in group) fallow deer (Dama dama), exploiting the same pasture. We used maximum likelihood estimation for discriminating between a power-tailed distribution and the exponential alternative and rank/frequency plots to discriminate between Lévy walks and composite Brownian walks. We showed that solitary deer perform Lévy searches, while clustered animals did not adopt that strategy. Conclusion/Significance: Our demonstration of the presence of Lévy walks is, at our knowledge, the first available which adopts up-to-date statistical methodologies in a terrestrial mammal. Comparing solitary and clustered deer, we concluded that the Lévy walks of solitary deer represent an adaptation maximising encounter rates with forage resources and not an epiphenomenon induced by a peculiar food distribution.

Suggested Citation

  • Stefano Focardi & Paolo Montanaro & Elena Pecchioli, 2009. "Adaptive Lévy Walks in Foraging Fallow Deer," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-6, August.
  • Handle: RePEc:plo:pone00:0006587
    DOI: 10.1371/journal.pone.0006587
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006587
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0006587&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0006587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. M. Viswanathan & Sergey V. Buldyrev & Shlomo Havlin & M. G. E. da Luz & E. P. Raposo & H. Eugene Stanley, 1999. "Optimizing the success of random searches," Nature, Nature, vol. 401(6756), pages 911-914, October.
    2. H.J. de Knegt & G.M. Hengeveld & F. van Langevelde & W.F. de Boer & K.P. Kirkman, 2007. "Patch density determines movement patterns and foraging efficiency of large herbivores," Behavioral Ecology, International Society for Behavioral Ecology, vol. 18(6), pages 1065-1072.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    2. Surya G Nurzaman & Yoshio Matsumoto & Yutaka Nakamura & Kazumichi Shirai & Satoshi Koizumi & Hiroshi Ishiguro, 2011. "From Lévy to Brownian: A Computational Model Based on Biological Fluctuation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
    3. Qi, Jie & Rong, Zhihai, 2013. "The emergence of scaling laws search dynamics in a particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1522-1531.
    4. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    5. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    6. Ma, Brian O. & Davis, Brad H. & Gillespie, David R. & VanLaerhoven, Sherah L., 2009. "Incorporating behaviour into simple models of dispersal using the biological control agent Dicyphus hesperus," Ecological Modelling, Elsevier, vol. 220(23), pages 3271-3279.
    7. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    8. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    9. LaScala-Gruenewald, Diana E. & Mehta, Rohan S. & Liu, Yu & Denny, Mark W., 2019. "Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies," Ecological Modelling, Elsevier, vol. 404(C), pages 69-82.
    10. Cédric Sueur & Léa Briard & Odile Petit, 2011. "Individual Analyses of Lévy Walk in Semi-Free Ranging Tonkean Macaques (Macaca tonkeana)," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-8, October.
    11. Amanda E. Martin & Trent M. Hoover & John S. Richardson, 2013. "Modeling the role of stage-structured agonistic interactions in ontogenetic habitat shifts," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(2), pages 355-365.
    12. Maria C. Mariani & William Kubin & Peter K. Asante & Osei K. Tweneboah & Maria P. Beccar-Varela & Sebastian Jaroszewicz & Hector Gonzalez-Huizar, 2020. "Self-Similar Models: Relationship between the Diffusion Entropy Analysis, Detrended Fluctuation Analysis and Lévy Models," Mathematics, MDPI, vol. 8(7), pages 1-20, June.
    13. Danish A. Ahmed & Sergei V. Petrovskii & Paulo F. C. Tilles, 2018. "The “Lévy or Diffusion” Controversy: How Important Is the Movement Pattern in the Context of Trapping?," Mathematics, MDPI, vol. 6(5), pages 1-27, May.
    14. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    15. Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    16. Chudzińska, Magda & Ayllón, Daniel & Madsen, Jesper & Nabe-Nielsen, Jacob, 2016. "Discriminating between possible foraging decisions using pattern-oriented modelling: The case of pink-footed geese in Mid-Norway during their spring migration," Ecological Modelling, Elsevier, vol. 320(C), pages 299-315.
    17. Andrew M Hein & Scott A McKinley, 2013. "Sensory Information and Encounter Rates of Interacting Species," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-11, August.
    18. Cianelli, Daniela & Uttieri, Marco & Strickler, J. Rudi & Zambianchi, Enrico, 2009. "Zooplankton encounters in patchy particle distributions," Ecological Modelling, Elsevier, vol. 220(5), pages 596-604.
    19. Shu Han & Xiaoming Liu & Yan Yang & Hailin Cao & Yuanhong Zhong & Chuanlian Luo, 2021. "Intelligent Algorithm for Variable Scale Adaptive Feature Separation of Mechanical Composite Fault Signals," Energies, MDPI, vol. 14(22), pages 1-13, November.
    20. Maja Varga & Stjepan Bogdan & Marija Dragojević & Damjan Miklić, 2011. "Collective search and decision-making for target localization," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(1), pages 51-65, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0006587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.