IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0006570.html
   My bibliography  Save this article

Forecasting the effectiveness of indoor residual spraying for reducing dengue burden

Author

Listed:
  • Thomas J Hladish
  • Carl A B Pearson
  • Diana Patricia Rojas
  • Hector Gomez-Dantes
  • M Elizabeth Halloran
  • Gonzalo M Vazquez-Prokopec
  • Ira M Longini

Abstract

Background: Historically, mosquito control programs successfully helped contain malaria and yellow fever, but recent efforts have been unable to halt the spread of dengue, chikungunya, or Zika, all transmitted by Aedes mosquitoes. Using a dengue transmission model and results from indoor residual spraying (IRS) field experiments, we investigated how IRS-like campaign scenarios could effectively control dengue in an endemic setting. Methods and findings: In our model, we found that high levels of household coverage (75% treated once per year), applied proactively before the typical dengue season could reduce symptomatic infections by 89.7% (median of 1000 simulations; interquartile range [IQR]:[83.0%, 94.8%]) in year one and 78.2% (IQR: [71.2%, 88.0%]) cumulatively over the first five years of an annual program. Lower coverage had correspondingly lower effectiveness, as did reactive campaigns. Though less effective than preventative campaigns, reactive and even post-epidemic interventions retain some effectiveness; these campaigns disrupt inter-seasonal transmission, highlighting an off-season control opportunity. Regardless, none of the campaign scenarios maintain their initial effectiveness beyond two seasons, instead stabilizing at much lower levels of benefit: in year 20, median effectiveness was only 27.3% (IQR: [-21.3%, 56.6%]). Furthermore, simply ceasing an initially successful program exposes a population with lowered herd immunity to the same historical threat, and we observed outbreaks more than four-fold larger than pre-intervention outbreaks. These results do not take into account evolving insecticide resistance, thus long-term effectiveness may be lower if new, efficacious insecticides are not developed. Conclusions: Using a detailed agent-based dengue transmission model for Yucatán State, Mexico, we predict that high coverage indoor residual spraying (IRS) interventions can largely eliminate transmission for a few years, when applied a few months before the typical seasonal epidemic peak. However, vector control succeeds by preventing infections, which precludes natural immunization. Thus, as a population benefits from mosquito control, it gradually loses naturally acquired herd immunity, and the control effectiveness declines; this occurs across all of our modeled scenarios, and is consistent with other empirical work. Long term control that maintains early effectiveness would require some combination of increasing investment, complementary interventions such as vaccination, and control programs across a broad region to diminish risk of importation. Author summary: Using realistic simulation of dengue in the state of Yucatán, Mexico, we show high coverage indoor residual spraying (IRS) interventions can largely eliminate transmission for a few years, when applied proactively. However, initial success relies on population-level immunity, which declines with reduced infection rates, so simulated IRS campaigns stabilize at much lower effectiveness than initially observed. Moreover, if a campaign then suddenly stops, the model predicts large outbreaks until population immunity recovers. These results suggest that mosquito control could enable elimination in endemic settings, but that natural infections must be replaced, e.g. with vaccination, to achieve that end. Regardless, early campaign years’ performance cannot be assumed representative of longterm benefit, and campaign cost estimates must account for increasing population susceptibility.

Suggested Citation

  • Thomas J Hladish & Carl A B Pearson & Diana Patricia Rojas & Hector Gomez-Dantes & M Elizabeth Halloran & Gonzalo M Vazquez-Prokopec & Ira M Longini, 2018. "Forecasting the effectiveness of indoor residual spraying for reducing dengue burden," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(6), pages 1-16, June.
  • Handle: RePEc:plo:pntd00:0006570
    DOI: 10.1371/journal.pntd.0006570
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006570
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0006570&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0006570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0006570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.