IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0004551.html
   My bibliography  Save this article

Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis

Author

Listed:
  • Leigh R Bowman
  • Sarah Donegan
  • Philip J McCall

Abstract

Background: Although a vaccine could be available as early as 2016, vector control remains the primary approach used to prevent dengue, the most common and widespread arbovirus of humans worldwide. We reviewed the evidence for effectiveness of vector control methods in reducing its transmission. Methodology/Principal Findings: Studies of any design published since 1980 were included if they evaluated method(s) targeting Aedes aegypti or Ae. albopictus for at least 3 months. Primary outcome was dengue incidence. Following Cochrane and PRISMA Group guidelines, database searches yielded 960 reports, and 41 were eligible for inclusion, with 19 providing data for meta-analysis. Study duration ranged from 5 months to 10 years. Studies evaluating multiple tools/approaches (23 records) were more common than single methods, while environmental management was the most common method (19 studies). Only 9/41 reports were randomized controlled trials (RCTs). Two out of 19 studies evaluating dengue incidence were RCTs, and neither reported any statistically significant impact. No RCTs evaluated effectiveness of insecticide space-spraying (fogging) against dengue. Based on meta-analyses, house screening significantly reduced dengue risk, OR 0.22 (95% CI 0.05–0.93, p = 0.04), as did combining community-based environmental management and water container covers, OR 0.22 (95% CI 0.15–0.32, p 0.5), but insecticide aerosols (OR 2.03; 95% CI 1.44–2.86) and mosquito coils (OR 1.44; 95% CI 1.09–1.91) were associated with higher dengue risk (p = 0.01). Although 23/41 studies examined the impact of insecticide-based tools, only 9 evaluated the insecticide susceptibility status of the target vector population during the study. Conclusions/Significance: This review and meta-analysis demonstrate the remarkable paucity of reliable evidence for the effectiveness of any dengue vector control method. Standardised studies of higher quality to evaluate and compare methods must be prioritised to optimise cost-effective dengue prevention. Author Summary: Dengue fever has increased dramatically over the past 50 years and today is the most widespread mosquito-borne arboviral disease, affecting nearly half the world’s population in 128 countries. Until the arrival of a vaccine, control of its Aedes vectors has been the only method to prevent dengue infection. With dengue outbreaks occurring at increasing frequency and intensity, we undertook a systematic review and meta-analysis of the literature, to evaluate the evidence for effectiveness of vector control strategies currently available. Forty-one studies (from 5 months to 10 years duration) were included in the review. Most studies investigated combinations of approaches but only 9 studies were randomized controlled trials (RCTs). Remarkably, no RCTs evaluated effectiveness against dengue of insecticide space-spraying (outdoor fogging), the main response to dengue outbreaks used worldwide. Nevertheless, there was limited evidence indicating that house screening and to a lesser extent, community-based environmental management with water container covers could reduce risk of dengue infection. However, skin repellents, bed nets and mosquito traps had no effect while insecticide aerosols and mosquito coils were associated with higher dengue risk. However, the quality of the few studies eligible for inclusion was poor overall, and the evidence base is very weak, compromising the knowledge base for making recommendations on delivery of appropriate and effective control. Given this paucity of reliable evidence, standardised studies of higher quality must now be a priority.

Suggested Citation

  • Leigh R Bowman & Sarah Donegan & Philip J McCall, 2016. "Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(3), pages 1-24, March.
  • Handle: RePEc:plo:pntd00:0004551
    DOI: 10.1371/journal.pntd.0004551
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004551
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0004551&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0004551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Donald S Shepard & Eduardo A Undurraga & Yara A Halasa, 2013. "Economic and Disease Burden of Dengue in Southeast Asia," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 7(2), pages 1-12, February.
    3. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    4. Celina Maria Turchi Martelli & Joao Bosco Siqueira Junior & Mirian Perpetua Palha Dias Parente & Ana Laura de Sene Amancio Zara & Consuelo Silva Oliveira & Cynthia Braga & Fabiano Geraldo Pimenta Juni, 2015. "Economic Impact of Dengue: Multicenter Study across Four Brazilian Regions," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(9), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juliana Quintero & Nicolás Ronderos Pulido & James Logan & Thomas Ant & Jane Bruce & Gabriel Carrasquilla, 2020. "Effectiveness of an intervention for Aedes aegypti control scaled-up under an inter-sectoral approach in a Colombian city hyper-endemic for dengue virus," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-16, April.
    2. Claudia Buhler & Volker Winkler & Silvia Runge-Ranzinger & Ross Boyce & Olaf Horstick, 2019. "Environmental methods for dengue vector control – A systematic review and meta-analysis," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 13(7), pages 1-15, July.
    3. David Weetman & Basile Kamgang & Athanase Badolo & Catherine L. Moyes & Freya M. Shearer & Mamadou Coulibaly & João Pinto & Louis Lambrechts & Philip J. McCall, 2018. "Aedes Mosquitoes and Aedes -Borne Arboviruses in Africa: Current and Future Threats," IJERPH, MDPI, vol. 15(2), pages 1-20, January.
    4. Beniamino Caputo & Mattia Manica & Gianluca Russo & Angelo Solimini, 2020. "Knowledge, Attitude and Practices towards the Tiger Mosquito Aedes Albopictus. A Questionnaire Based Survey in Lazio Region (Italy) before the 2017 Chikungunya Outbreak," IJERPH, MDPI, vol. 17(11), pages 1-12, June.
    5. Antonio Ligsay & Olivier Telle & Richard Paul, 2021. "Challenges to Mitigating the Urban Health Burden of Mosquito-Borne Diseases in the Face of Climate Change," IJERPH, MDPI, vol. 18(9), pages 1-12, May.
    6. Renaud Marti & Zhichao Li & Thibault Catry & Emmanuel Roux & Morgan Mangeas & Pascal Handschumacher & Jean Gaudart & Annelise Tran & Laurent Demagistri & Jean-François Faure & José Joaquín Carvajal & , 2020. "A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires," Post-Print hal-02682042, HAL.
    7. Guido España & Andrew J Leidner & Stephen H Waterman & T Alex Perkins, 2021. "Cost-effectiveness of dengue vaccination in Puerto Rico," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(7), pages 1-15, July.
    8. Christopher Fitzpatrick & Alexander Haines & Mathieu Bangert & Andrew Farlow & Janet Hemingway & Raman Velayudhan, 2017. "An economic evaluation of vector control in the age of a dengue vaccine," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(8), pages 1-27, August.
    9. Dyna Doum & Hans J. Overgaard & Mayfong Mayxay & Sutas Suttiprapa & Prasert Saichua & Tipaya Ekalaksananan & Panwad Tongchai & Md. Siddikur Rahman & Ubydul Haque & Sysavanh Phommachanh & Tiengkham Pon, 2020. "Dengue Seroprevalence and Seroconversion in Urban and Rural Populations in Northeastern Thailand and Southern Laos," IJERPH, MDPI, vol. 17(23), pages 1-19, December.
    10. Vinyas Harish & Felipe J. Colón-González & Filipe R. R. Moreira & Rory Gibb & Moritz U. G. Kraemer & Megan Davis & Robert C. Reiner & David M. Pigott & T. Alex Perkins & Daniel J. Weiss & Isaac I. Bog, 2024. "Human movement and environmental barriers shape the emergence of dengue," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Jian-Wei Xu & Hui Liu & Didan Ai & Yan Yu & Bian Yu, 2019. "The Shan people’s health beliefs, knowledge and perceptions of dengue in Eastern Shan Special Region IV, Myanmar," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 13(6), pages 1-15, June.
    12. Martinez-Cruz, Carolina & Arenas-Monreal, Luz & Gomez-Dantes, Héctor & Villegas-Chim, Josue & Barrera-Fuentes Gloria, Abigail & Toledo-Romani Maria, Eugenia & Pavia-Ruz, Norma & Che-Mendoza, Azael & M, 2023. "Educational intervention for the control of Aedes aegypti with Wolbachia in Yucatan, Mexico," Evaluation and Program Planning, Elsevier, vol. 97(C).
    13. Auliya A. Suwantika & Angga P. Kautsar & Woro Supadmi & Neily Zakiyah & Rizky Abdulah & Mohammad Ali & Maarten J. Postma, 2020. "Cost-Effectiveness of Dengue Vaccination in Indonesia: Considering Integrated Programs with Wolbachia -Infected Mosquitos and Health Education," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    14. Antonio D. Ligsay & Kristan Jela M. Tambio & Michelle Joyce M. Aytona & Grecebio Jonathan D. Alejandro & Zypher Jude G. Regencia & Emmanuel S. Baja & Richard Edward L. Paul, 2022. "Assessing Entomological and Epidemiological Efficacy of Pyriproxyfen-Treated Ovitraps in the Reduction of Aedes Species: A Quasi-Experiment on Dengue Infection Using Saliva Samples," IJERPH, MDPI, vol. 19(5), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    2. Gerhart Knerer & Christine S M Currie & Sally C Brailsford, 2020. "The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-32, October.
    3. Pi Guo & Tao Liu & Qin Zhang & Li Wang & Jianpeng Xiao & Qingying Zhang & Ganfeng Luo & Zhihao Li & Jianfeng He & Yonghui Zhang & Wenjun Ma, 2017. "Developing a dengue forecast model using machine learning: A case study in China," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(10), pages 1-22, October.
    4. Adriana Zubieta-Zavala & Malaquias López-Cervantes & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & José Ramos Castañeda & Sendy Isarel Hernández-Gaytán & Juan Guillermo López Yescas & Luis Durá, 2018. "Economic impact of dengue in Mexico considering reported cases for 2012 to 2016," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(12), pages 1-18, December.
    5. Eduardo A Undurraga & Yara A Halasa & Donald S Shepard, 2013. "Use of Expansion Factors to Estimate the Burden of Dengue in Southeast Asia: A Systematic Analysis," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 7(2), pages 1-15, February.
    6. Christopher Fitzpatrick & Alexander Haines & Mathieu Bangert & Andrew Farlow & Janet Hemingway & Raman Velayudhan, 2017. "An economic evaluation of vector control in the age of a dengue vaccine," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(8), pages 1-27, August.
    7. Mohd ‘Ammar Ihsan Ahmad Zamzuri & Farah Nabila Abd Majid & Rahmat Dapari & Mohd Rohaizat Hassan & Abd Majid Mohd Isa, 2022. "Perceived Risk for Dengue Infection Mediates the Relationship between Attitude and Practice for Dengue Prevention: A Study in Seremban, Malaysia," IJERPH, MDPI, vol. 19(20), pages 1-17, October.
    8. Kangzhuang Yuan & Yuan Chen & Meifeng Zhong & Yongping Lin & Lidong Liu, 2022. "Risk and predictive factors for severe dengue infection: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-18, April.
    9. Emmanuelle Kumaran & Dyna Doum & Vanney Keo & Ly Sokha & BunLeng Sam & Vibol Chan & Neal Alexander & John Bradley & Marco Liverani & Didot Budi Prasetyo & Agus Rachmat & Sergio Lopes & Jeffrey Hii & L, 2018. "Dengue knowledge, attitudes and practices and their impact on community-based vector control in rural Cambodia," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(2), pages 1-16, February.
    10. İlkay Unay-Gailhard & Mark A. Brennen, 2022. "How digital communications contribute to shaping the career paths of youth: a review study focused on farming as a career option," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1491-1508, December.
    11. Mahin Ghafari & Vali Baigi & Zahra Cheraghi & Amin Doosti-Irani, 2016. "The Prevalence of Asymptomatic Bacteriuria in Iranian Pregnant Women: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-10, June.
    12. Elizabeth T Cafiero-Fonseca & Andrew Stawasz & Sydney T Johnson & Reiko Sato & David E Bloom, 2017. "The full benefits of adult pneumococcal vaccination: A systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
    13. Santos Urbina & Sofía Villatoro & Jesús Salinas, 2021. "Self-Regulated Learning and Technology-Enhanced Learning Environments in Higher Education: A Scoping Review," Sustainability, MDPI, vol. 13(13), pages 1-12, June.
    14. Oded Berger-Tal & Alison L Greggor & Biljana Macura & Carrie Ann Adams & Arden Blumenthal & Amos Bouskila & Ulrika Candolin & Carolina Doran & Esteban Fernández-Juricic & Kiyoko M Gotanda & Catherine , 2019. "Systematic reviews and maps as tools for applying behavioral ecology to management and policy," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(1), pages 1-8.
    15. Nadine Desrochers & Adèle Paul‐Hus & Jen Pecoskie, 2017. "Five decades of gratitude: A meta‐synthesis of acknowledgments research," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(12), pages 2821-2833, December.
    16. Maryono, Maryono & Killoes, Aditya Marendra & Adhikari, Rajendra & Abdul Aziz, Ammar, 2024. "Agriculture development through multi-stakeholder partnerships in developing countries: A systematic literature review," Agricultural Systems, Elsevier, vol. 213(C).
    17. Alene Sze Jing Yong & Yi Heng Lim & Mark Wing Loong Cheong & Ednin Hamzah & Siew Li Teoh, 2022. "Willingness-to-pay for cancer treatment and outcome: a systematic review," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 1037-1057, August.
    18. Xue-Ying Xu & Hong Kong & Rui-Xiang Song & Yu-Han Zhai & Xiao-Fei Wu & Wen-Si Ai & Hong-Bo Liu, 2014. "The Effectiveness of Noninvasive Biomarkers to Predict Hepatitis B-Related Significant Fibrosis and Cirrhosis: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-16, June.
    19. Vicente Miñana-Signes & Manuel Monfort-Pañego & Javier Valiente, 2021. "Teaching Back Health in the School Setting: A Systematic Review of Randomized Controlled Trials," IJERPH, MDPI, vol. 18(3), pages 1-18, January.
    20. Agnieszka A. Tubis & Katarzyna Grzybowska, 2022. "In Search of Industry 4.0 and Logistics 4.0 in Small-Medium Enterprises—A State of the Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0004551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.