Author
Listed:
- Mika Oki
- Toshihiko Sunahara
- Masahiro Hashizume
- Taro Yamamoto
Abstract
Background: Dengue infection is endemic in many regions throughout the world. While insecticide fogging targeting the vector mosquito Aedes aegypti is a major control measure against dengue epidemics, the impact of this method remains controversial. A previous mathematical simulation study indicated that insecticide fogging minimized cases when conducted soon after peak disease prevalence, although the impact was minimal, possibly because seasonality and population immunity were not considered. Periodic outbreak patterns are also highly influenced by seasonal climatic conditions. Thus, these factors are important considerations when assessing the effect of vector control against dengue. We used mathematical simulations to identify the appropriate timing of insecticide fogging, considering seasonal change of vector populations, and to evaluate its impact on reducing dengue cases with various levels of transmission intensity. Methodology/Principal Findings: We created the Susceptible-Exposed-Infectious-Recovered (SEIR) model of dengue virus transmission. Mosquito lifespan was assumed to change seasonally and the optimal timing of insecticide fogging to minimize dengue incidence under various lengths of the wet season was investigated. We also assessed whether insecticide fogging was equally effective at higher and lower endemic levels by running simulations over a 500-year period with various transmission intensities to produce an endemic state. In contrast to the previous study, the optimal application of insecticide fogging was between the onset of the wet season and the prevalence peak. Although it has less impact in areas that have higher endemicity and longer wet seasons, insecticide fogging can prevent a considerable number of dengue cases if applied at the optimal time. Conclusions/Significance: The optimal timing of insecticide fogging and its impact on reducing dengue cases were greatly influenced by seasonality and the level of transmission intensity. We suggest that these factors should be considered when planning a control strategy against dengue vectors. Author Summary: Dengue virus infection is a serious infectious disease transmitted by Aedes mosquitoes in the tropics and sub-tropics. Disease control often involves the use of insecticide fogging against mosquito vectors. However, the effectiveness of this method for reducing dengue cases, in addition to appropriate application procedures, is still debated. The previous mathematical simulation study reported that insecticide fogging reduces dengue cases most effectively when applied soon after the epidemic peak; however, the model did not take into account seasonality and population immunity, which strongly affect the epidemic pattern of dengue infection. Considering these important factors, we used a mathematical simulation model to explore the most effective time for insecticide fogging and to evaluate its impact on reducing dengue cases. Simulations were conducted with various lengths of the wet season and population immunity levels. We found that insecticide fogging substantially reduces dengue cases if conducted at an appropriate time. In contrast to the previously suggested application time during the peak of disease prevalence, the optimal timing is relatively early: between the beginning of the dengue season and the prevalence peak.
Suggested Citation
Mika Oki & Toshihiko Sunahara & Masahiro Hashizume & Taro Yamamoto, 2011.
"Optimal Timing of Insecticide Fogging to Minimize Dengue Cases: Modeling Dengue Transmission among Various Seasonalities and Transmission Intensities,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 5(10), pages 1-7, October.
Handle:
RePEc:plo:pntd00:0001367
DOI: 10.1371/journal.pntd.0001367
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0001367. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.