IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921004914.html
   My bibliography  Save this article

Modeling assumptions, optimal control strategies and mitigation through vaccination to Zika virus

Author

Listed:
  • Sharma, Naveen
  • Singh, Ram
  • Singh, Jagdev
  • Castillo, Oscar

Abstract

Zika virus is amongst the deadly viruses still prevalent in more than 50 countries around the world. It is amosquitoes-borne disease that spread at fast rate in 2016. Zika virus belongs to the family of Flaviviridae virus. In this paper, a deterministic mathematical model is formulated to investigate the effects of vaccination in controlling the disease through optimal solution. The qualitative behavior of the proposed model is studied by using the theory of stability analysis. A basic reproduction number is computed by using Next Generation Technique todecide a threshold values of R0i.e. if R0<1,the system is locally asymptotically stable and disease dies out and ifR0>1 dynamicsthe system is locally asymptotically unstable and diseases persist in the system. The global stability is also investigated via Lyapunov function. Numerical results were performed to see the effects of vaccination on the dynamics of the model with and without optimal interventions. The analysis of model suggests various strategies which help in the elimination of the disease.

Suggested Citation

  • Sharma, Naveen & Singh, Ram & Singh, Jagdev & Castillo, Oscar, 2021. "Modeling assumptions, optimal control strategies and mitigation through vaccination to Zika virus," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004914
    DOI: 10.1016/j.chaos.2021.111137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921004914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laith Yakob & Archie C A Clements, 2013. "A Mathematical Model of Chikungunya Dynamics and Control: The Major Epidemic on Réunion Island," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-6, March.
    2. Begum, Razia & Tunç, Osman & Khan, Hasib & Gulzar, Haseena & Khan, Aziz, 2021. "A fractional order Zika virus model with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Hasan, Bushra & Singh, Manmohan & Richards, David & Blicblau, Aaron, 2019. "Mathematical modelling of Zika virus as a mosquito-borne and sexually transmitted disease with diffusion effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 56-75.
    4. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2021. "Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    2. Raja, Muhammad Asif Zahoor & Mehmood, Ammara & Ashraf, Sadia & Awan, Khalid Mahmood & Shi, Peng, 2022. "Design of evolutionary finite difference solver for numerical treatment of computer virus propagation with countermeasures model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 409-430.
    3. L., Diego F. Aranda & González-Parra, Gilberto & Benincasa, Tommaso, 2019. "Mathematical modeling and numerical simulations of Zika in Colombia considering mutation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 1-18.
    4. Khan, Hasib & Ahmad, Farooq & Tunç, Osman & Idrees, Muhammad, 2022. "On fractal-fractional Covid-19 mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Hussain, Shah & Tunç, Osman & Rahman, Ghaus ur & Khan, Hasib & Nadia, Elissa, 2023. "Mathematical analysis of stochastic epidemic model of MERS-corona & application of ergodic theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 130-150.
    6. Hashem Najafi & Sina Etemad & Nichaphat Patanarapeelert & Joshua Kiddy K. Asamoah & Shahram Rezapour & Thanin Sitthiwirattham, 2022. "A Study on Dynamics of CD4 + T-Cells under the Effect of HIV-1 Infection Based on a Mathematical Fractal-Fractional Model via the Adams-Bashforth Scheme and Newton Polynomials," Mathematics, MDPI, vol. 10(9), pages 1-32, April.
    7. Tariq Q. S. Abdullah & Gang Huang & Wadhah Al-Sadi & Yasser Aboelmagd & Wael Mobarak, 2024. "Fractional Dynamics of Cassava Mosaic Disease Model with Recovery Rate Using New Proposed Numerical Scheme," Mathematics, MDPI, vol. 12(15), pages 1-24, July.
    8. Hasib Khan & Jehad Alzabut & Haseena Gulzar & Osman Tunç & Sandra Pinelas, 2023. "On System of Variable Order Nonlinear p-Laplacian Fractional Differential Equations with Biological Application," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    9. Wang, Yan & Liu, Xianning, 2017. "Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 138(C), pages 31-48.
    10. Ali, Hegagi Mohamed & Ameen, Ismail Gad & Gaber, Yasmeen Ahmed, 2024. "The effect of curative and preventive optimal control measures on a fractional order plant disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 496-515.
    11. Ameen, Ismail Gad & Baleanu, Dumitru & Ali, Hegagi Mohamed, 2022. "Different strategies to confront maize streak disease based on fractional optimal control formulation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Wang, Yan & Li, Yazhi & Liu, Lili & Liu, Xianning, 2022. "A periodic Chikungunya model with virus mutation and transovarial transmission," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Azhar Iqbal Kashif Butt & Saira Batool & Muhammad Imran & Muneerah Al Nuwairan, 2023. "Design and Analysis of a New COVID-19 Model with Comparative Study of Control Strategies," Mathematics, MDPI, vol. 11(9), pages 1-29, April.
    14. Tara Sadeghieh & Lisa A Waddell & Victoria Ng & Alexandra Hall & Jan Sargeant, 2020. "A scoping review of importation and predictive models related to vector-borne diseases, pathogens, reservoirs, or vectors (1999–2016)," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    15. Olivares, Alberto & Staffetti, Ernesto, 2023. "A statistical moment-based spectral approach to the chance-constrained stochastic optimal control of epidemic models," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    16. Esteban Dodero-Rojas & Luiza G Ferreira & Vitor B P Leite & José N Onuchic & Vinícius G Contessoto, 2020. "Modeling Chikungunya control strategies and Mayaro potential outbreak in the city of Rio de Janeiro," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.