Author
Listed:
- Kirk E Lohmueller
- Anders Albrechtsen
- Yingrui Li
- Su Yeon Kim
- Thorfinn Korneliussen
- Nicolas Vinckenbosch
- Geng Tian
- Emilia Huerta-Sanchez
- Alison F Feder
- Niels Grarup
- Torben Jørgensen
- Tao Jiang
- Daniel R Witte
- Annelli Sandbæk
- Ines Hellmann
- Torsten Lauritzen
- Torben Hansen
- Oluf Pedersen
- Jun Wang
- Rasmus Nielsen
Abstract
A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations. Author Summary: While researchers have identified candidate genes that have evolved under positive Darwinian natural selection, less is known about how much of the human genome has been affected by natural selection or whether positive selection has had a greater role at shaping patterns of variation across the human genome than negative selection acting against deleterious mutations. To address these questions, we have combined patterns of genetic variation in three genome-wide resequencing datasets with population genetic models of natural selection. We find that genetic diversity and average minor allele frequency are reduced in regions of the genome with low recombination rate. Additionally, genetic diversity, human-chimp divergence, and average minor allele frequency have been reduced near genes. Overall, while we cannot exclude positive selection at a fraction of mutations, models that include many weakly deleterious mutations throughout the human genome better explain multiple aspects of the genome-wide resequencing data. This work points to negative selection as an important force for shaping patterns of variation and suggests that there are many weakly deleterious mutations at both coding and noncoding sites throughout the human genome. Understanding such mutations will be important for learning about human evolution and the genetic basis of common disease.
Suggested Citation
Kirk E Lohmueller & Anders Albrechtsen & Yingrui Li & Su Yeon Kim & Thorfinn Korneliussen & Nicolas Vinckenbosch & Geng Tian & Emilia Huerta-Sanchez & Alison F Feder & Niels Grarup & Torben Jørgensen , 2011.
"Natural Selection Affects Multiple Aspects of Genetic Variation at Putatively Neutral Sites across the Human Genome,"
PLOS Genetics, Public Library of Science, vol. 7(10), pages 1-15, October.
Handle:
RePEc:plo:pgen00:1002326
DOI: 10.1371/journal.pgen.1002326
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1002326. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.