IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1006915.html
   My bibliography  Save this article

The population genetics of human disease: The case of recessive, lethal mutations

Author

Listed:
  • Carlos Eduardo G Amorim
  • Ziyue Gao
  • Zachary Baker
  • José Francisco Diesel
  • Yuval B Simons
  • Imran S Haque
  • Joseph Pickrell
  • Molly Przeworski

Abstract

Do the frequencies of disease mutations in human populations reflect a simple balance between mutation and purifying selection? What other factors shape the prevalence of disease mutations? To begin to answer these questions, we focused on one of the simplest cases: recessive mutations that alone cause lethal diseases or complete sterility. To this end, we generated a hand-curated set of 417 Mendelian mutations in 32 genes reported to cause a recessive, lethal Mendelian disease. We then considered analytic models of mutation-selection balance in infinite and finite populations of constant sizes and simulations of purifying selection in a more realistic demographic setting, and tested how well these models fit allele frequencies estimated from 33,370 individuals of European ancestry. In doing so, we distinguished between CpG transitions, which occur at a substantially elevated rate, and three other mutation types. Intriguingly, the observed frequency for CpG transitions is slightly higher than expectation but close, whereas the frequencies observed for the three other mutation types are an order of magnitude higher than expected, with a bigger deviation from expectation seen for less mutable types. This discrepancy is even larger when subtle fitness effects in heterozygotes or lethal compound heterozygotes are taken into account. In principle, higher than expected frequencies of disease mutations could be due to widespread errors in reporting causal variants, compensation by other mutations, or balancing selection. It is unclear why these factors would have a greater impact on disease mutations that occur at lower rates, however. We argue instead that the unexpectedly high frequency of disease mutations and the relationship to the mutation rate likely reflect an ascertainment bias: of all the mutations that cause recessive lethal diseases, those that by chance have reached higher frequencies are more likely to have been identified and thus to have been included in this study. Beyond the specific application, this study highlights the parameters likely to be important in shaping the frequencies of Mendelian disease alleles.Author summary: What determines the frequencies of disease mutations in human populations? To begin to answer this question, we focus on one of the simplest cases: mutations that cause completely recessive, lethal Mendelian diseases. We first review theory about what to expect from mutation and selection in a population of finite size and generate predictions based on simulations using a plausible demographic scenario of recent human evolution. For a highly mutable type of mutation, transitions at CpG sites, we find that the predictions are close to the observed frequencies of recessive lethal disease mutations. For less mutable types, however, predictions substantially under-estimate the observed frequency. We discuss possible explanations for the discrepancy and point to a complication that, to our knowledge, is not widely appreciated: that there exists ascertainment bias in disease mutation discovery. Specifically, we suggest that alleles that have been identified to date are likely the ones that by chance have reached higher frequencies and are thus more likely to have been mapped. More generally, our study highlights the factors that influence the frequencies of Mendelian disease alleles.

Suggested Citation

  • Carlos Eduardo G Amorim & Ziyue Gao & Zachary Baker & José Francisco Diesel & Yuval B Simons & Imran S Haque & Joseph Pickrell & Molly Przeworski, 2017. "The population genetics of human disease: The case of recessive, lethal mutations," PLOS Genetics, Public Library of Science, vol. 13(9), pages 1-23, September.
  • Handle: RePEc:plo:pgen00:1006915
    DOI: 10.1371/journal.pgen.1006915
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006915
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1006915&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1006915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1006915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.