IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009161.html
   My bibliography  Save this article

Optimizing network propagation for multi-omics data integration

Author

Listed:
  • Konstantina Charmpi
  • Manopriya Chokkalingam
  • Ronja Johnen
  • Andreas Beyer

Abstract

Network propagation refers to a class of algorithms that integrate information from input data across connected nodes in a given network. These algorithms have wide applications in systems biology, protein function prediction, inferring condition-specifically altered sub-networks, and prioritizing disease genes. Despite the popularity of network propagation, there is a lack of comparative analyses of different algorithms on real data and little guidance on how to select and parameterize the various algorithms. Here, we address this problem by analyzing different combinations of network normalization and propagation methods and by demonstrating schemes for the identification of optimal parameter settings on real proteome and transcriptome data. Our work highlights the risk of a ‘topology bias’ caused by the incorrect use of network normalization approaches. Capitalizing on the fact that network propagation is a regularization approach, we show that minimizing the bias-variance tradeoff can be utilized for selecting optimal parameters. The application to real multi-omics data demonstrated that optimal parameters could also be obtained by either maximizing the agreement between different omics layers (e.g. proteome and transcriptome) or by maximizing the consistency between biological replicates. Furthermore, we exemplified the utility and robustness of network propagation on multi-omics datasets for identifying ageing-associated genes in brain and liver tissues of rats and for elucidating molecular mechanisms underlying prostate cancer progression. Overall, this work compares different network propagation approaches and it presents strategies for how to use network propagation algorithms to optimally address a specific research question at hand.Author summary: Modern technologies enable the simultaneous measurement of tens of thousands of molecules in biological samples. Algorithms called network propagation or network smoothing are frequently used to integrate such data with already known molecular interaction data, such as protein and gene interaction networks. These methods distribute the information on molecular perturbations within the network and help identifying network regions that are enriched for many perturbed (affected) molecules. Despite the popularity of these methods, there is a lack of guidance on how to optimally use them. Here, we highlight possible pitfalls when using incorrect network normalization methods. Further, we present different ways for optimizing the smoothing parameters used during network smoothing: the first approach maximizes the consistency between replicate measurements within a dataset; the second one maximizes the consistency between different types of ‘omics’ measurements, such as proteomics and transcriptomics. Using two multi-omics datasets, one from a cohort of prostate cancer patients, the other one from an ageing study on rat brain and liver tissues, we exemplify the effects of these strategies on real data.

Suggested Citation

  • Konstantina Charmpi & Manopriya Chokkalingam & Ronja Johnen & Andreas Beyer, 2021. "Optimizing network propagation for multi-omics data integration," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-26, November.
  • Handle: RePEc:plo:pcbi00:1009161
    DOI: 10.1371/journal.pcbi.1009161
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009161
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009161&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel E Carlin & Barry Demchak & Dexter Pratt & Eric Sage & Trey Ideker, 2017. "Network propagation in the cytoscape cyberinfrastructure," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-9, October.
    2. Oron Vanunu & Oded Magger & Eytan Ruppin & Tomer Shlomi & Roded Sharan, 2010. "Associating Genes and Protein Complexes with Disease via Network Propagation," PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    2. T M Murali & Matthew D Dyer & David Badger & Brett M Tyler & Michael G Katze, 2011. "Network-Based Prediction and Analysis of HIV Dependency Factors," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
    3. Deborah Chasman & Brandi Gancarz & Linhui Hao & Michael Ferris & Paul Ahlquist & Mark Craven, 2014. "Inferring Host Gene Subnetworks Involved in Viral Replication," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-22, May.
    4. Xing Chen & Jun Yin & Jia Qu & Li Huang, 2018. "MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-24, August.
    5. Li-Chen Hung & Pei-Tseng Kung & Chi-Hsuan Lung & Ming-Hsui Tsai & Shih-An Liu & Li-Ting Chiu & Kuang-Hua Huang & Wen-Chen Tsai, 2020. "Assessment of the Risk of Oral Cancer Incidence in A High-Risk Population and Establishment of A Predictive Model for Oral Cancer Incidence Using A Population-Based Cohort in Taiwan," IJERPH, MDPI, vol. 17(2), pages 1-15, January.
    6. Jianhua Li & Xiaoyan Lin & Yueyang Teng & Shouliang Qi & Dayu Xiao & Jianying Zhang & Yan Kang, 2016. "A Comprehensive Evaluation of Disease Phenotype Networks for Gene Prioritization," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-18, July.
    7. Le Ou-Yang & Dao-Qing Dai & Xiao-Fei Zhang, 2013. "Protein Complex Detection via Weighted Ensemble Clustering Based on Bayesian Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-18, May.
    8. Elisa Salviato & Vera Djordjilović & Monica Chiogna & Chiara Romualdi, 2019. "SourceSet: A graphical model approach to identify primary genes in perturbed biological pathways," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-28, October.
    9. Cui, Ying & Cai, Meng & Stanley, H. Eugene, 2018. "Discovering disease-associated genes in weighted protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 53-61.
    10. Mengyun Yang & Huimin Luo & Yaohang Li & Fang-Xiang Wu & Jianxin Wang, 2019. "Overlap matrix completion for predicting drug-associated indications," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-21, December.
    11. Abby Hill & Scott Gleim & Florian Kiefer & Frederic Sigoillot & Joseph Loureiro & Jeremy Jenkins & Melody K Morris, 2019. "Benchmarking network algorithms for contextualizing genes of interest," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-14, December.
    12. Florin Ratajczak & Mitchell Joblin & Marcel Hildebrandt & Martin Ringsquandl & Pascal Falter-Braun & Matthias Heinig, 2023. "Speos: an ensemble graph representation learning framework to predict core gene candidates for complex diseases," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Daniel E Carlin & Barry Demchak & Dexter Pratt & Eric Sage & Trey Ideker, 2017. "Network propagation in the cytoscape cyberinfrastructure," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-9, October.
    14. Juan J Cáceres & Alberto Paccanaro, 2019. "Disease gene prediction for molecularly uncharacterized diseases," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-14, July.
    15. U Martin Singh-Blom & Nagarajan Natarajan & Ambuj Tewari & John O Woods & Inderjit S Dhillon & Edward M Marcotte, 2013. "Prediction and Validation of Gene-Disease Associations Using Methods Inspired by Social Network Analyses," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-17, May.
    16. MaoQiang Xie & YingJie Xu & YaoGong Zhang & TaeHyun Hwang & Rui Kuang, 2015. "Network-based Phenome-Genome Association Prediction by Bi-Random Walk," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    17. Joana P Gonçalves & Alexandre P Francisco & Yves Moreau & Sara C Madeira, 2012. "Interactogeneous: Disease Gene Prioritization Using Heterogeneous Networks and Full Topology Scores," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.