IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924000560.html
   My bibliography  Save this article

Coupling resonance of signal responses induced by heterogeneously mixed positive and negative couplings in cognitive subnetworks

Author

Listed:
  • Deng, Liyuan
  • Huo, Siyu
  • Chen, Aihua
  • Liu, Zonghua

Abstract

How weak external signals are detected in cognitive subnetworks is one of the key problems to understand how brain functions work. So far, most studies on signal responses are focused on artificial complex networks and it is found that a topological resonance can be induced by the feature of scale-free networks, but little attention has been paid to real brain networks, especially the cognitive subnetworks responsible for signal responses. Herein we address this problem in real brain networks but do not find such a topological resonance, indicating that scale-free is not the key feature of brain networks. Surprisingly, we find a novel resonance effect of signal response induced by heterogeneously mixed positive and negative couplings and thus name it as coupling resonance of signal responses, which explains the mechanism of how brain networks, especially the cognitive subnetworks, detects weak signals. We investigate this coupling resonance in the cases of both heterogeneous couplings and heterogeneous oscillators and find that there is an optimal phenomenon on both the average and standard deviation of coupling strengths. Further, we confirm this coupling resonance in real cognitive subnetworks with weighted links. Finally, we provide a theoretical analysis to show that this coupling resonant comes from the coexistence of the two different local states of neighboring nodes.

Suggested Citation

  • Deng, Liyuan & Huo, Siyu & Chen, Aihua & Liu, Zonghua, 2024. "Coupling resonance of signal responses induced by heterogeneously mixed positive and negative couplings in cognitive subnetworks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000560
    DOI: 10.1016/j.chaos.2024.114505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yousheng Shu & Andrea Hasenstaub & David A. McCormick, 2003. "Turning on and off recurrent balanced cortical activity," Nature, Nature, vol. 423(6937), pages 288-293, May.
    2. Shen, Qiwei & Liu, Zonghua, 2023. "Unidirectional links prefer local firing propagation in the neural network of C. elegans," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    4. Mingshan Xue & Bassam V. Atallah & Massimo Scanziani, 2014. "Equalizing excitation–inhibition ratios across visual cortical neurons," Nature, Nature, vol. 511(7511), pages 596-600, July.
    5. Michael Wehr & Anthony M. Zador, 2003. "Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex," Nature, Nature, vol. 426(6965), pages 442-446, November.
    6. Wen Xiong & James E. Ferrell, 2003. "A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision," Nature, Nature, vol. 426(6965), pages 460-465, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashok Litwin-Kumar & Anne-Marie M Oswald & Nathaniel N Urban & Brent Doiron, 2011. "Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-14, December.
    2. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Jamiree Harrison & Enoch Yeung, 2021. "Stability Analysis of Parameter Varying Genetic Toggle Switches Using Koopman Operators," Mathematics, MDPI, vol. 9(23), pages 1-25, December.
    4. Margot C Bjoring & C Daniel Meliza, 2019. "A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-20, January.
    5. Ankit Gupta & Corentin Briat & Mustafa Khammash, 2014. "A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-16, June.
    6. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    7. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    8. Duncan Ingram & Guy-Bart Stan, 2023. "Modelling genetic stability in engineered cell populations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Lu, Wen & Zhang, Yuhao & Qian, Yu & Pandey, Vikas & Qu, Zhilin & Zhang, Zhaoyang, 2021. "Bursting and complex oscillatory patterns in a gene regulatory network model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Katie H. Long & Justin D. Lieber & Sliman J. Bensmaia, 2022. "Texture is encoded in precise temporal spiking patterns in primate somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    12. Ghanim Ullah & Steven J Schiff, 2010. "Assimilating Seizure Dynamics," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-12, May.
    13. David Pérez-González & Olga Hernández & Ellen Covey & Manuel S Malmierca, 2012. "GABAA-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    14. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    15. Catalina Vich & Rafel Prohens & Antonio E. Teruel & Antoni Guillamon, 2020. "Estimation of Synaptic Activity during Neuronal Oscillations," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    16. Luís António Menezes Carreira & Filipe Tostevin & Ulrich Gerland & Lotte Søgaard-Andersen, 2020. "Protein-protein interaction network controlling establishment and maintenance of switchable cell polarity," PLOS Genetics, Public Library of Science, vol. 16(6), pages 1-30, June.
    17. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    18. Andreas Steimer & Kaspar Schindler, 2015. "Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-26, July.
    19. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    20. Das, Saureesh, 2022. "Recurrence quantification and bifurcation analysis of electrical activity in resistive/memristive synapse coupled Fitzhugh–Nagumo type neurons," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.