IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51065-7.html
   My bibliography  Save this article

Net synaptic drive of fast-spiking interneurons is inverted towards inhibition in human FCD I epilepsy

Author

Listed:
  • Eunhye Cho

    (Seoul National University College of Medicine
    Seoul National University College of Natural Sciences)

  • Jii Kwon

    (Seoul National University College of Natural Sciences)

  • Gyuwon Lee

    (Seoul National University College of Natural Sciences)

  • Jiwoo Shin

    (Seoul National University College of Medicine
    Seoul National University College of Natural Sciences)

  • Hyunsu Lee

    (Pusan National University School of Medicine)

  • Suk-Ho Lee

    (Seoul National University College of Medicine
    Seoul National University College of Natural Sciences)

  • Chun Kee Chung

    (Seoul National University Hospital
    Seoul National University Medical Research Center)

  • Jaeyoung Yoon

    (Seoul National University College of Medicine
    Harvard Medical School)

  • Won-Kyung Ho

    (Seoul National University College of Medicine
    Seoul National University College of Natural Sciences)

Abstract

Focal cortical dysplasia type I (FCD I) is the most common cause of pharmaco-resistant epilepsy with the poorest prognosis. To understand the epileptogenic mechanisms of FCD I, we obtained tissue resected from patients with FCD I epilepsy, and from tumor patients as control. Using whole-cell patch clamp in acute human brain slices, we investigated the cellular properties of fast-spiking interneurons (FSINs) and pyramidal neurons (PNs) within the ictal onset zone. In FCD I epilepsy, FSINs exhibited lower firing rates from slower repolarization and action potential broadening, while PNs had increased firing. Importantly, excitatory synaptic drive of FSINs increased progressively with the scale of cortical activation as a general property across species, but this relationship was inverted towards net inhibition in FCD I epilepsy. Further comparison with intracranial electroencephalography (iEEG) from the same patients revealed that the spatial extent of pathological high-frequency oscillations (pHFO) was associated with synaptic events at FSINs.

Suggested Citation

  • Eunhye Cho & Jii Kwon & Gyuwon Lee & Jiwoo Shin & Hyunsu Lee & Suk-Ho Lee & Chun Kee Chung & Jaeyoung Yoon & Won-Kyung Ho, 2024. "Net synaptic drive of fast-spiking interneurons is inverted towards inhibition in human FCD I epilepsy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51065-7
    DOI: 10.1038/s41467-024-51065-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51065-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51065-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yousheng Shu & Andrea Hasenstaub & David A. McCormick, 2003. "Turning on and off recurrent balanced cortical activity," Nature, Nature, vol. 423(6937), pages 288-293, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashok Litwin-Kumar & Anne-Marie M Oswald & Nathaniel N Urban & Brent Doiron, 2011. "Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-14, December.
    2. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    3. Ghanim Ullah & Steven J Schiff, 2010. "Assimilating Seizure Dynamics," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-12, May.
    4. Andreas Steimer & Kaspar Schindler, 2015. "Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-26, July.
    5. Weijie Ye & Xiaoying Chen, 2023. "Effects of NMDA Receptor Hypofunction on Inhibitory Control in a Two-Layer Neural Circuit Model," Mathematics, MDPI, vol. 11(19), pages 1-12, September.
    6. Borges, F.S. & Protachevicz, P.R. & Pena, R.F.O. & Lameu, E.L. & Higa, G.S.V. & Kihara, A.H. & Matias, F.S. & Antonopoulos, C.G. & de Pasquale, R. & Roque, A.C. & Iarosz, K.C. & Ji, P. & Batista, A.M., 2020. "Self-sustained activity of low firing rate in balanced networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Gustavo Deco & Daniel Martí & Anders Ledberg & Ramon Reig & Maria V Sanchez Vives, 2009. "Effective Reduced Diffusion-Models: A Data Driven Approach to the Analysis of Neuronal Dynamics," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-10, December.
    8. Robert R Kerr & Anthony N Burkitt & Doreen A Thomas & Matthieu Gilson & David B Grayden, 2013. "Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-19, February.
    9. Shrey Dutta & Kartik K. Iyer & Sampsa Vanhatalo & Michael Breakspear & James A. Roberts, 2023. "Mechanisms underlying pathological cortical bursts during metabolic depletion," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    11. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    12. Kyriaki Sidiropoulou & Panayiota Poirazi, 2012. "Predictive Features of Persistent Activity Emergence in Regular Spiking and Intrinsic Bursting Model Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-15, April.
    13. Krishna Choudhary & Sven Berberich & Thomas T. G. Hahn & James M. McFarland & Mayank R. Mehta, 2024. "Spontaneous persistent activity and inactivity in vivo reveals differential cortico-entorhinal functional connectivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Sreedhar S Kumar & Jan Wülfing & Samora Okujeni & Joschka Boedecker & Martin Riedmiller & Ulrich Egert, 2016. "Autonomous Optimization of Targeted Stimulation of Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-22, August.
    15. Nariman Valizadeh & Majid Mirzaei & Mohammed Falah Allawi & Haitham Abdulmohsin Afan & Nuruol Syuhadaa Mohd & Aini Hussain & Ahmed El-Shafie, 2017. "Artificial intelligence and geo-statistical models for stream-flow forecasting in ungauged stations: state of the art," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1377-1392, April.
    16. Vanessa F Descalzo & Roberto Gallego & Maria V Sanchez-Vives, 2014. "Adaptation in the Visual Cortex: Influence of Membrane Trajectory and Neuronal Firing Pattern on Slow Afterpotentials," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-10, November.
    17. Deng, Liyuan & Huo, Siyu & Chen, Aihua & Liu, Zonghua, 2024. "Coupling resonance of signal responses induced by heterogeneously mixed positive and negative couplings in cognitive subnetworks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51065-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.