Author
Listed:
- Charles J Wilson
- David Barraza
- Todd Troyer
- Michael A Farries
Abstract
We used phase resetting methods to predict firing patterns of rat subthalamic nucleus (STN) neurons when their rhythmic firing was densely perturbed by noise. We applied sequences of contiguous brief (0.5–2 ms) current pulses with amplitudes drawn from a Gaussian distribution (10–100 pA standard deviation) to autonomously firing STN neurons in slices. Current noise sequences increased the variability of spike times with little or no effect on the average firing rate. We measured the infinitesimal phase resetting curve (PRC) for each neuron using a noise-based method. A phase model consisting of only a firing rate and PRC was very accurate at predicting spike timing, accounting for more than 80% of spike time variance and reliably reproducing the spike-to-spike pattern of irregular firing. An approximation for the evolution of phase was used to predict the effect of firing rate and noise parameters on spike timing variability. It quantitatively predicted changes in variability of interspike intervals with variation in noise amplitude, pulse duration and firing rate over the normal range of STN spontaneous rates. When constant current was used to drive the cells to higher rates, the PRC was altered in size and shape and accurate predictions of the effects of noise relied on incorporating these changes into the prediction. Application of rate-neutral changes in conductance showed that changes in PRC shape arise from conductance changes known to accompany rate increases in STN neurons, rather than the rate increases themselves. Our results show that firing patterns of densely perturbed oscillators cannot readily be distinguished from those of neurons randomly excited to fire from the rest state. The spike timing of repetitively firing neurons may be quantitatively predicted from the input and their PRCs, even when they are so densely perturbed that they no longer fire rhythmically.Author Summary: Most neurons receive thousands of synaptic inputs per second. Each of these may be individually weak but collectively they shape the temporal pattern of firing by the postsynaptic neuron. If the postsynaptic neuron fires repetitively, its synaptic inputs need not directly trigger action potentials, but may instead control the timing of action potentials that would occur anyway. The phase resetting curve encapsulates the influence of an input on the timing of the next action potential, depending on its time of arrival. We measured the phase resetting curves of neurons in the subthalamic nucleus and used them to accurately predict the timing of action potentials in a phase model subjected to complex input patterns. A simple approximation to the phase model accurately predicted the changes in firing pattern evoked by dense patterns of noise pulses varying in amplitude and pulse duration, and by changes in firing rate. We also showed that the phase resetting curve changes systematically with changes in total neuron conductance, and doing so predicts corresponding changes in firing pattern. Our results indicate that the phase model may accurately represent the temporal integration of complex patterns of input to repetitively firing neurons.
Suggested Citation
Charles J Wilson & David Barraza & Todd Troyer & Michael A Farries, 2014.
"Predicting the Responses of Repetitively Firing Neurons to Current Noise,"
PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-17, May.
Handle:
RePEc:plo:pcbi00:1003612
DOI: 10.1371/journal.pcbi.1003612
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003612. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.