IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i9p1468-d1465661.html
   My bibliography  Save this article

A Novel Hierarchical Clustering Sequential Forward Feature Selection Method for Paddy Rice Agriculture Mapping Based on Time-Series Images

Author

Listed:
  • Xingyin Duan

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China)

  • Xiaobo Wu

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China
    Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, China)

  • Jie Ge

    (Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, China
    Sichuan Institute of Land Science and Technology (Sichuan Center of Satellite Application Technology), Chengdu 610045, China)

  • Li Deng

    (Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, China
    Sichuan Institute of Land Science and Technology (Sichuan Center of Satellite Application Technology), Chengdu 610045, China)

  • Liang Shen

    (Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, China
    Surveying and Mapping Geographic Information Center, Sichuan Institute of Geological Survey, Chengdu 610072, China)

  • Jingwen Xu

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China
    Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, China)

  • Xiaoying Xu

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China)

  • Qin He

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China)

  • Yixin Chen

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China)

  • Xuesong Gao

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China
    Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, China)

  • Bing Li

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China
    Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, China)

Abstract

Timely and accurate mapping of rice distribution is crucial to estimate yield, optimize agriculture spatial patterns, and ensure global food security. Feature selection (FS) methods have significantly improved computational efficiency by reducing redundancy in spectral and temporal feature sets, playing a vital role in identifying and mapping paddy rice. However, the optimal feature sets selected by existing methods suffer from issues such as information redundancy or local optimality, limiting their accuracy in rice identification. Moreover, the effects of these FS methods on rice recognition in various machine learning classifiers and regions with different climatic conditions and planting structures is still unclear. To overcome these limitations, we conducted a comprehensive evaluation of the potential applications of major FS methods, including the wrapper method, embedded method, and filter method for rice mapping. A novel hierarchical lustering sequential forward selection (HCSFS) method for precisely extracting the optimal feature set for rice identification is proposed. The accuracy of the HCSFS and other FS methods for rice identification was tested with nine common machine learning classifiers. The results indicated that, among the three FS methods, the wrapper method achieved the best rice mapping performance, followed by the embedded method, and lastly, the filter method. The new HCSFS significantly reduced redundant features compared with eleven typical FS methods, demonstrating higher precision and stability, with user accuracy and producer accuracy exceeding 0.9548 and 0.9487, respectively. Additionally, the spatial distribution of rice maps generated using the optimal feature set selected by HCSFS closely aligned with actual planting patterns, markedly outperforming existing rice products. This research confirms the effectiveness and transferability of the HCSFS method for rice mapping across different climates and cultivation structures, suggesting its enormous potential for classifying other crops using time-series remote sensing images.

Suggested Citation

  • Xingyin Duan & Xiaobo Wu & Jie Ge & Li Deng & Liang Shen & Jingwen Xu & Xiaoying Xu & Qin He & Yixin Chen & Xuesong Gao & Bing Li, 2024. "A Novel Hierarchical Clustering Sequential Forward Feature Selection Method for Paddy Rice Agriculture Mapping Based on Time-Series Images," Agriculture, MDPI, vol. 14(9), pages 1-20, August.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1468-:d:1465661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/9/1468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/9/1468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ers:journl:v:xxiv:y:2021:i:4b:p:659-667 is not listed on IDEAS
    2. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. David G Mets & Michael S Brainard, 2018. "An automated approach to the quantitation of vocalizations and vocal learning in the songbird," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-29, August.
    4. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    5. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2011. "Measuring globalization: A hierarchical network approach," CREMA Working Paper Series 2011-11, Center for Research in Economics, Management and the Arts (CREMA).
    6. Balepur, Prashant Narayan, 1998. "Impacts of Computer-Mediated Communication on Travel and Communication Patterns: The Davis Community Network Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6cb1f85c, Institute of Transportation Studies, UC Berkeley.
    7. Lisa Price, 2001. "Demystifying farmers' entomological and pest management knowledge: A methodology for assessing the impacts on knowledge from IPM-FFS and NES interventions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 18(2), pages 153-176, June.
    8. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    9. Geert Soete & Wayne DeSarbo & J. Carroll, 1985. "Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 173-192, December.
    10. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    11. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    12. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    13. Taggart, J. H., 1999. "MNC subsidiary performance, risk, and corporate expectations," International Business Review, Elsevier, vol. 8(2), pages 233-255, April.
    14. Sorin Alexandru Ungureanu & Diana Andreea Mandricel & Bogdan Ioan Coculescu & Ionica Oncioiu, 2020. "Prevention in Dental Medicine. Case Studies and Explanations Regarding the Cost-Benefit Ratio," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 6(2), pages 135-147, June.
    15. Fang, Yixin & Wang, Junhui, 2011. "Penalized cluster analysis with applications to family data," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2128-2136, June.
    16. Simon Blanchard & Wayne DeSarbo, 2013. "A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 322-340, April.
    17. Satoru Yokoyama & Atsuho Nakayama & Akinori Okada, 2009. "One-mode three-way overlapping cluster analysis," Computational Statistics, Springer, vol. 24(1), pages 165-179, February.
    18. Vincent S. Tseng & Hsieh-Hui Yu & Shih-Chiang Yang, 2009. "Efficient mining of multilevel gene association rules from microarray and gene ontology," Information Systems Frontiers, Springer, vol. 11(4), pages 433-447, September.
    19. repec:jss:jstsof:35:i07 is not listed on IDEAS
    20. Thomas J. Lampoltshammer & Valerie Albrecht & Corinna Raith, 2021. "Teaching Digital Sustainability in Higher Education from a Transdisciplinary Perspective," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    21. Sumin Yu & Zhijiao Du & Xuanhua Xu, 2021. "Hierarchical Punishment-Driven Consensus Model for Probabilistic Linguistic Large-Group Decision Making with Application to Global Supplier Selection," Group Decision and Negotiation, Springer, vol. 30(6), pages 1343-1372, December.
    22. Shih-Chieh Chen & Ming-Young Jan & Kuo-Liang Lin & Sung-Lin Chao & Chien-Sen Liao, 2017. "Sustainability of Constructed Wetland under the Impact of Aquatic Organisms Overloading," Sustainability, MDPI, vol. 9(5), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1468-:d:1465661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.