IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i5p863-d99179.html
   My bibliography  Save this article

Sustainability of Constructed Wetland under the Impact of Aquatic Organisms Overloading

Author

Listed:
  • Shih-Chieh Chen

    (Department of Civil and Ecological Engineering, I Shou University, Kaohsiung 84001, Taiwan)

  • Ming-Young Jan

    (Department of Civil and Ecological Engineering, I Shou University, Kaohsiung 84001, Taiwan)

  • Kuo-Liang Lin

    (Department of Civil and Ecological Engineering, I Shou University, Kaohsiung 84001, Taiwan)

  • Sung-Lin Chao

    (Department of Civil and Ecological Engineering, I Shou University, Kaohsiung 84001, Taiwan)

  • Chien-Sen Liao

    (Department of Civil and Ecological Engineering, I Shou University, Kaohsiung 84001, Taiwan)

Abstract

Environmental impacts, such as earthquakes, chemical pollution and anthropogenic factors can affect the stability and sustainability of an ecosystem. In this study, a long-term (3.7 years) investigation experiment was conducted to estimate the sustainability of a constructed wetland (CW) under the impact of aquatic organisms overloading. The situation of aquatic organisms overloading in this study meant that around 27,000 kg of fishes had to be moved and accommodated in a 4 ha water area of wetland for six months. Experimental results indicated that the pH value of CW water was slightly acidic and the Dissolved Oxygen (DO) level decreased under the impact. On the other hand, the levels of Electrical Conductivity (EC), Suspended Solids (SS), Chemical Oxygen Demand (COD), and Total Kjeldahl Nitrogen (TKN) of CW water were increased under the impact. The pathogen analysis revealed that total coliforms, Salmonella spp., Enterococcus spp., and Escherichia coli, in the wetland water increased under the impact. The analyzed factors of water quality and amount of pathogens were all returned to their original statuses soon after the impact ended. Eventually, the results of microbial community structure analysis showed that overloading of aquatic organisms slightly increased the specific richness (R) of wetland bacteria, whereas higher structural biodiversity (H) of CW could stabilize the whole microbial community and prevent the pathogens or other bacteria from increasing to become the dominant strains. These results were novel and could be possible to conclude that a CW environment could not only stabilize the water quality and amount of pathogens resulting from the impact of aquatic organisms overloading, but also they could stabilize the microbial community structures, allowing the biogeochemical cycles of the CW to function. They could provide the useful information for wetland sustainability.

Suggested Citation

  • Shih-Chieh Chen & Ming-Young Jan & Kuo-Liang Lin & Sung-Lin Chao & Chien-Sen Liao, 2017. "Sustainability of Constructed Wetland under the Impact of Aquatic Organisms Overloading," Sustainability, MDPI, vol. 9(5), pages 1-12, May.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:863-:d:99179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/5/863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/5/863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    2. Katarzyna Hampel & Paulina Ucieklak-Jez & Agnieszka Bem, 2021. "Health System Responsiveness in the Light of the Euro Health Consumer Index," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 659-667.
    3. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Roberts, Leigh, 2014. "Consistent estimation of breakpoints in time series, with application to wavelet analysis of Citigroup returns," Working Paper Series 18815, Victoria University of Wellington, School of Economics and Finance.
    5. David G Mets & Michael S Brainard, 2018. "An automated approach to the quantitation of vocalizations and vocal learning in the songbird," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-29, August.
    6. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    7. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    8. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2011. "Measuring globalization: A hierarchical network approach," CREMA Working Paper Series 2011-11, Center for Research in Economics, Management and the Arts (CREMA).
    9. Balepur, Prashant Narayan, 1998. "Impacts of Computer-Mediated Communication on Travel and Communication Patterns: The Davis Community Network Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6cb1f85c, Institute of Transportation Studies, UC Berkeley.
    10. İsmail Güzel & Atabey Kaygun, 2022. "A new non-archimedean metric on persistent homology," Computational Statistics, Springer, vol. 37(4), pages 1963-1983, September.
    11. Lisa Price, 2001. "Demystifying farmers' entomological and pest management knowledge: A methodology for assessing the impacts on knowledge from IPM-FFS and NES interventions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 18(2), pages 153-176, June.
    12. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    13. Geert Soete & Wayne DeSarbo & J. Carroll, 1985. "Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 173-192, December.
    14. Silvia Blasi & Edoardo Gobbo & Silvia Rita Sedita, 2022. "Big Data for smart cities and citizen engagement: evidence from Twitter data analysis on Italian municipalities," Working Papers - Business wp2022_01.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    15. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    16. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    17. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    18. Fernández, D. & Arnold, R. & Pledger, S., 2016. "Mixture-based clustering for the ordered stereotype model," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 46-75.
    19. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    20. Wayne DeSarbo & J. Douglas Carroll, 1985. "Three-way metric unfolding via alternating weighted least squares," Psychometrika, Springer;The Psychometric Society, vol. 50(3), pages 275-300, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:863-:d:99179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.