IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006020.html
   My bibliography  Save this article

Deploying digital health data to optimize influenza surveillance at national and local scales

Author

Listed:
  • Elizabeth C Lee
  • Ali Arab
  • Sandra M Goldlust
  • Cécile Viboud
  • Bryan T Grenfell
  • Shweta Bansal

Abstract

The surveillance of influenza activity is critical to early detection of epidemics and pandemics and the design of disease control strategies. Case reporting through a voluntary network of sentinel physicians is a commonly used method of passive surveillance for monitoring rates of influenza-like illness (ILI) worldwide. Despite its ubiquity, little attention has been given to the processes underlying the observation, collection, and spatial aggregation of sentinel surveillance data, and its subsequent effects on epidemiological understanding. We harnessed the high specificity of diagnosis codes in medical claims from a database that represented 2.5 billion visits from upwards of 120,000 United States healthcare providers each year. Among influenza seasons from 2002-2009 and the 2009 pandemic, we simulated limitations of sentinel surveillance systems such as low coverage and coarse spatial resolution, and performed Bayesian inference to probe the robustness of ecological inference and spatial prediction of disease burden. Our models suggest that a number of socio-environmental factors, in addition to local population interactions, state-specific health policies, as well as sampling effort may be responsible for the spatial patterns in U.S. sentinel ILI surveillance. In addition, we find that biases related to spatial aggregation were accentuated among areas with more heterogeneous disease risk, and sentinel systems designed with fixed reporting locations across seasons provided robust inference and prediction. With the growing availability of health-associated big data worldwide, our results suggest mechanisms for optimizing digital data streams to complement traditional surveillance in developed settings and enhance surveillance opportunities in developing countries.Author summary: Influenza contributes substantially to global morbidity and mortality each year, and epidemiological surveillance for influenza is typically conducted by sentinel physicians and health care providers recruited to report cases of influenza-like illness. While population coverage and representativeness, and geographic distribution are considered during sentinel provider recruitment, systems cannot always achieve these standards due to the administrative burdens of data collection. We present spatial estimates of influenza disease burden across United States counties by leveraging the volume and fine spatial resolution of medical claims data, and existing socio-environmental hypotheses about the determinants of influenza disease disease burden. Using medical claims as a testbed, this study adds to literature on the optimization of surveillance system design by considering conditions of limited reporting and spatial aggregation. We highlight the importance of considering sampling biases and reporting locations when interpreting surveillance data, and suggest that local mobility and regional policies may be critical to understanding the spatial distribution of reported influenza-like illness.

Suggested Citation

  • Elizabeth C Lee & Ali Arab & Sandra M Goldlust & Cécile Viboud & Bryan T Grenfell & Shweta Bansal, 2018. "Deploying digital health data to optimize influenza surveillance at national and local scales," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-23, March.
  • Handle: RePEc:plo:pcbi00:1006020
    DOI: 10.1371/journal.pcbi.1006020
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006020
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006020&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Segolene Charaudeau & Khashayar Pakdaman & Pierre-Yves Boëlle, 2014. "Commuter Mobility and the Spread of Infectious Diseases: Application to Influenza in France," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    2. Gotway C.A. & Young L.J., 2002. "Combining Incompatible Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 632-648, June.
    3. James H Stark & Derek A T Cummings & Bard Ermentrout & Stephen Ostroff & Ravi Sharma & Samuel Stebbins & Donald S Burke & Stephen R Wisniewski, 2012. "Local Variations in Spatial Synchrony of Influenza Epidemics," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
    4. Samuel V Scarpino & Nedialko B Dimitrov & Lauren Ancel Meyers, 2012. "Optimizing Provider Recruitment for Influenza Surveillance Networks," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    5. Simonsen, L. & Clarke, M.J. & Williamson, G.D. & Stroup, D.F. & Arden, N.H. & Schonberger, L.B., 1997. "The impact of influenza epidemics on mortality: Introducing a severity index," American Journal of Public Health, American Public Health Association, vol. 87(12), pages 1944-1950.
    6. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    7. Peter J Hotez, 2008. "Neglected Infections of Poverty in the United States of America," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 2(6), pages 1-11, June.
    8. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Forlani & S. Bhatt & M. Cameletti & E. Krainski & M. Blangiardo, 2020. "A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    2. Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
    3. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    4. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    5. Jingjie Zhang & Matthias Katzfuss, 2022. "Multi-Scale Vecchia Approximations of Gaussian Processes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 440-460, September.
    6. Yuheng Ling, 2020. "Time, space and hedonic prediction accuracy: evidence from Corsican apartment markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(2), pages 367-388, April.
    7. Carson, Stuart & Mills Flemming, Joanna, 2014. "Seal encounters at sea: A contemporary spatial approach using R-INLA," Ecological Modelling, Elsevier, vol. 291(C), pages 175-181.
    8. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    9. Nicoletta D’Angelo & Antonino Abbruzzo & Giada Adelfio, 2021. "Spatio-Temporal Spread Pattern of COVID-19 in Italy," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
    10. Joshua L. Warren & Penny Gordon‐Larsen, 2018. "Factors associated with supermarket and convenience store closure: a discrete time spatial survival modelling approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 783-802, June.
    11. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    12. Rebuli, Nicolas P. & Bean, N.G. & Ross, J.V., 2018. "Estimating the basic reproductive number during the early stages of an emerging epidemic," Theoretical Population Biology, Elsevier, vol. 119(C), pages 26-36.
    13. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    14. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    15. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    16. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    17. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    18. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    19. Peter J Hotez, 2011. "America’s Most Distressed Areas and Their Neglected Infections: The United States Gulf Coast and the District of Columbia," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 5(3), pages 1-3, March.
    20. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.