IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002472.html
   My bibliography  Save this article

Optimizing Provider Recruitment for Influenza Surveillance Networks

Author

Listed:
  • Samuel V Scarpino
  • Nedialko B Dimitrov
  • Lauren Ancel Meyers

Abstract

The increasingly complex and rapid transmission dynamics of many infectious diseases necessitates the use of new, more advanced methods for surveillance, early detection, and decision-making. Here, we demonstrate that a new method for optimizing surveillance networks can improve the quality of epidemiological information produced by typical provider-based networks. Using past surveillance and Internet search data, it determines the precise locations where providers should be enrolled. When applied to redesigning the provider-based, influenza-like-illness surveillance network (ILINet) for the state of Texas, the method identifies networks that are expected to significantly outperform the existing network with far fewer providers. This optimized network avoids informational redundancies and is thereby more effective than networks designed by conventional methods and a recently published algorithm based on maximizing population coverage. We show further that Google Flu Trends data, when incorporated into a network as a virtual provider, can enhance but not replace traditional surveillance methods. Author Summary: Public health agencies use surveillance systems to detect and monitor chronic and infectious diseases. These systems often rely on data sources that are chosen based on loose guidelines or out of convenience. In this paper, we introduce a new, data-driven method for designing and improving surveillance systems. Our approach is a geographic optimization of data sources designed to achieve specific surveillance goals. We tested our method by re-designing Texas' provider-based influenza surveillance system (ILINet). The resulting networks better predicted influenza associated hospitalizations and contained fewer providers than the existing ILINet. Furthermore, our study demonstrates that the integration of Internet source data, like Google Flu Trends, into surveillance systems can enhance traditional, provider-based networks.

Suggested Citation

  • Samuel V Scarpino & Nedialko B Dimitrov & Lauren Ancel Meyers, 2012. "Optimizing Provider Recruitment for Influenza Surveillance Networks," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
  • Handle: RePEc:plo:pcbi00:1002472
    DOI: 10.1371/journal.pcbi.1002472
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002472
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002472&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Khan, A.S. & Fleischauer, A. & Casani, J. & Groseclose, S.L., 2010. "The next public health revolution: Public health information fusion and social networks," American Journal of Public Health, American Public Health Association, vol. 100(7), pages 1237-1242.
    3. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    4. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    5. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel V Scarpino & James G Scott & Rosalind M Eggo & Bruce Clements & Nedialko B Dimitrov & Lauren Ancel Meyers, 2020. "Socioeconomic bias in influenza surveillance," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-19, July.
    2. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    3. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kahr, Michael & Leitner, Markus & Ruthmair, Mario & Sinnl, Markus, 2021. "Benders decomposition for competitive influence maximization in (social) networks," Omega, Elsevier, vol. 100(C).
    2. Yajing Liu & Zhenliang Zhang & Edwin K. P. Chong & Ali Pezeshki, 2018. "Performance Bounds with Curvature for Batched Greedy Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 535-562, May.
    3. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    4. Güney, Evren & Leitner, Markus & Ruthmair, Mario & Sinnl, Markus, 2021. "Large-scale influence maximization via maximal covering location," European Journal of Operational Research, Elsevier, vol. 289(1), pages 144-164.
    5. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    6. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    7. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    8. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    9. Guanyi Wang, 2024. "Robust Network Targeting with Multiple Nash Equilibria," Papers 2410.20860, arXiv.org, revised Nov 2024.
    10. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 516-543, February.
    11. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    12. Mohammad Abouei Mehrizi & Federico Corò & Emilio Cruciani & Gianlorenzo D’Angelo, 2022. "Election control through social influence with voters’ uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 635-669, August.
    13. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    14. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    15. Emily M. Craparo & Mumtaz Karatas & Tobias U. Kuhn, 2017. "Sensor placement in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 287-304, June.
    16. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    17. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    18. Hongjie Guo & Jianzhong Li & Hong Gao, 2022. "Data source selection for approximate query," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2443-2459, November.
    19. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    20. repec:dgr:rugsom:99a17 is not listed on IDEAS
    21. Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.