IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005801.html
   My bibliography  Save this article

Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States

Author

Listed:
  • Teresa K Yamana
  • Sasikiran Kandula
  • Jeffrey Shaman

Abstract

Recent research has produced a number of methods for forecasting seasonal influenza outbreaks. However, differences among the predicted outcomes of competing forecast methods can limit their use in decision-making. Here, we present a method for reconciling these differences using Bayesian model averaging. We generated retrospective forecasts of peak timing, peak incidence, and total incidence for seasonal influenza outbreaks in 48 states and 95 cities using 21 distinct forecast methods, and combined these individual forecasts to create weighted-average superensemble forecasts. We compared the relative performance of these individual and superensemble forecast methods by geographic location, timing of forecast, and influenza season. We find that, overall, the superensemble forecasts are more accurate than any individual forecast method and less prone to producing a poor forecast. Furthermore, we find that these advantages increase when the superensemble weights are stratified according to the characteristics of the forecast or geographic location. These findings indicate that different competing influenza prediction systems can be combined into a single more accurate forecast product for operational delivery in real time.Author summary: Timely forecasts of infectious disease transmission can help public health officials, health care providers, and individuals better prepare for and respond to disease outbreaks. Work in recent years has led to the development of a number of forecast systems. These systems provide important information on future disease incidence; however, all forecasting systems contain inaccuracies, or error. This error can be reduced by combining information from multiple forecasting systems into a superensemble using Bayesian averaging methods. Here we compare 21 forecasting systems for seasonal influenza outbreaks and use them together to create superensemble forecasts. The superensemble produces more accurate forecasts than the individual systems, improving our ability to predict the timing and severity of seasonal influenza outbreaks.

Suggested Citation

  • Teresa K Yamana & Sasikiran Kandula & Jeffrey Shaman, 2017. "Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-17, November.
  • Handle: RePEc:plo:pcbi00:1005801
    DOI: 10.1371/journal.pcbi.1005801
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005801
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005801&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    2. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    3. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    4. Wan Yang & Alicia Karspeck & Jeffrey Shaman, 2014. "Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-15, April.
    5. Jean-Paul Chretien & Dylan George & Jeffrey Shaman & Rohit A Chitale & F Ellis McKenzie, 2014. "Influenza Forecasting in Human Populations: A Scoping Review," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Guo & Pei Zhang & Vivian Do & Jakob Runge & Kun Zhang & Zheshen Han & Shenxi Deng & Hongli Lin & Sheikh Taslim Ali & Ruchong Chen & Yuming Guo & Linwei Tian, 2024. "Ozone as an environmental driver of influenza," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Kathryn S Taylor & James W Taylor, 2022. "Interval forecasts of weekly incident and cumulative COVID-19 mortality in the United States: A comparison of combining methods," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-25, March.
    3. Prashant Rangarajan & Sandeep K Mody & Madhav Marathe, 2019. "Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-24, November.
    4. Nicholas G Reich & Craig J McGowan & Teresa K Yamana & Abhinav Tushar & Evan L Ray & Dave Osthus & Sasikiran Kandula & Logan C Brooks & Willow Crawford-Crudell & Graham Casey Gibson & Evan Moore & Reb, 2019. "Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-19, November.
    5. Sebastian Funk & Anton Camacho & Adam J Kucharski & Rachel Lowe & Rosalind M Eggo & W John Edmunds, 2019. "Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    6. Zixiao Luo & Xiaocan Jia & Junzhe Bao & Zhijuan Song & Huili Zhu & Mengying Liu & Yongli Yang & Xuezhong Shi, 2022. "A Combined Model of SARIMA and Prophet Models in Forecasting AIDS Incidence in Henan Province, China," IJERPH, MDPI, vol. 19(10), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    2. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    3. Sequoia I Leuba & Reza Yaesoubi & Marina Antillon & Ted Cohen & Christoph Zimmer, 2020. "Tracking and predicting U.S. influenza activity with a real-time surveillance network," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-14, November.
    4. Jeffrey Shaman & Sasikiran Kandula & Wan Yang & Alicia Karspeck, 2017. "The use of ambient humidity conditions to improve influenza forecast," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-16, November.
    5. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    6. Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
    7. David C Farrow & Logan C Brooks & Sangwon Hyun & Ryan J Tibshirani & Donald S Burke & Roni Rosenfeld, 2017. "A human judgment approach to epidemiological forecasting," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-19, March.
    8. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    9. Nicholas G Reich & Craig J McGowan & Teresa K Yamana & Abhinav Tushar & Evan L Ray & Dave Osthus & Sasikiran Kandula & Logan C Brooks & Willow Crawford-Crudell & Graham Casey Gibson & Evan Moore & Reb, 2019. "Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-19, November.
    10. Jialiang Liu & Sumihiro Suzuki, 2022. "Real-Time Detection of Flu Season Onset: A Novel Approach to Flu Surveillance," IJERPH, MDPI, vol. 19(6), pages 1-9, March.
    11. Michal Ben-Nun & Pete Riley & James Turtle & David P Bacon & Steven Riley, 2019. "Forecasting national and regional influenza-like illness for the USA," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-20, May.
    12. Sarah C Kramer & Jeffrey Shaman, 2019. "Development and validation of influenza forecasting for 64 temperate and tropical countries," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-20, February.
    13. Soo Beom Choi & Juhyeon Kim & Insung Ahn, 2019. "Forecasting type-specific seasonal influenza after 26 weeks in the United States using influenza activities in other countries," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
    14. Evan L Ray & Nicholas G Reich, 2018. "Prediction of infectious disease epidemics via weighted density ensembles," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-23, February.
    15. Baek, Changryong & Davis, Richard A. & Pipiras, Vladas, 2017. "Sparse seasonal and periodic vector autoregressive modeling," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 103-126.
    16. Kyle S Hickmann & Geoffrey Fairchild & Reid Priedhorsky & Nicholas Generous & James M Hyman & Alina Deshpande & Sara Y Del Valle, 2015. "Forecasting the 2013–2014 Influenza Season Using Wikipedia," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-29, May.
    17. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    18. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    19. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    20. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.