IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006785.html
   My bibliography  Save this article

Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15

Author

Listed:
  • Sebastian Funk
  • Anton Camacho
  • Adam J Kucharski
  • Rachel Lowe
  • Rosalind M Eggo
  • W John Edmunds

Abstract

Real-time forecasts based on mathematical models can inform critical decision-making during infectious disease outbreaks. Yet, epidemic forecasts are rarely evaluated during or after the event, and there is little guidance on the best metrics for assessment. Here, we propose an evaluation approach that disentangles different components of forecasting ability using metrics that separately assess the calibration, sharpness and bias of forecasts. This makes it possible to assess not just how close a forecast was to reality but also how well uncertainty has been quantified. We used this approach to analyse the performance of weekly forecasts we generated in real time for Western Area, Sierra Leone, during the 2013–16 Ebola epidemic in West Africa. We investigated a range of forecast model variants based on the model fits generated at the time with a semi-mechanistic model, and found that good probabilistic calibration was achievable at short time horizons of one or two weeks ahead but model predictions were increasingly unreliable at longer forecasting horizons. This suggests that forecasts may have been of good enough quality to inform decision making based on predictions a few weeks ahead of time but not longer, reflecting the high level of uncertainty in the processes driving the trajectory of the epidemic. Comparing forecasts based on the semi-mechanistic model to simpler null models showed that the best semi-mechanistic model variant performed better than the null models with respect to probabilistic calibration, and that this would have been identified from the earliest stages of the outbreak. As forecasts become a routine part of the toolkit in public health, standards for evaluation of performance will be important for assessing quality and improving credibility of mathematical models, and for elucidating difficulties and trade-offs when aiming to make the most useful and reliable forecasts.Author summary: During epidemics, reliable forecasts can help allocate resources effectively to combat the disease. Various types of mathematical models can be used to make such forecasts. In order to assess how good the forecasts are, they need to be compared to what really happened. Here, we describe different approaches to assessing how good forecasts were that we made with mathematical models during the 2013–16 West African Ebola epidemic, focusing on one particularly affected area of Sierra Leone. We found that, using the type of models we used, it was possible to reliably predict the epidemic for a maximum of one or two weeks ahead, but no longer. Comparing different versions of our model to simpler models, we further found that it would have been possible to determine the model that was most reliable at making forecasts from early on in the epidemic. This suggests that there is value in assessing forecasts, and that it should be possible to improve forecasts by checking how good they are during an ongoing epidemic.

Suggested Citation

  • Sebastian Funk & Anton Camacho & Adam J Kucharski & Rachel Lowe & Rosalind M Eggo & W John Edmunds, 2019. "Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
  • Handle: RePEc:plo:pcbi00:1006785
    DOI: 10.1371/journal.pcbi.1006785
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006785
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006785&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Petra Friederichs & Thordis L. Thorarinsdottir, 2012. "Forecast verification for extreme value distributions with an application to probabilistic peak wind prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 23(7), pages 579-594, November.
    2. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
    3. L. Held & K. Rufibach & F. Balabdaoui, 2010. "A Score Regression Approach to Assess Calibration of Continuous Probabilistic Predictions," Biometrics, The International Biometric Society, vol. 66(4), pages 1295-1305, December.
    4. Teresa K Yamana & Sasikiran Kandula & Jeffrey Shaman, 2017. "Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-17, November.
    5. Sen Pei & Jeffrey Shaman, 2017. "Counteracting structural errors in ensemble forecast of influenza outbreaks," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    6. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    7. John M Drake & RajReni B Kaul & Laura W Alexander & Suzanne M O’Regan & Andrew M Kramer & J Tomlin Pulliam & Matthew J Ferrari & Andrew W Park, 2015. "Ebola Cases and Health System Demand in Liberia," PLOS Biology, Public Library of Science, vol. 13(1), pages 1-20, January.
    8. Murray, Lawrence M., 2015. "Bayesian State-Space Modelling on High-Performance Hardware Using LibBi," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i10).
    9. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kris V Parag & Christl A Donnelly, 2020. "Using information theory to optimise epidemic models for real-time prediction and estimation," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-20, July.
    2. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    3. Emily S Nightingale & Lloyd A C Chapman & Sridhar Srikantiah & Swaminathan Subramanian & Purushothaman Jambulingam & Johannes Bracher & Mary M Cameron & Graham F Medley, 2020. "A spatio-temporal approach to short-term prediction of visceral leishmaniasis diagnoses in India," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(7), pages 1-21, July.
    4. Coughlan de Perez, Erin & Stephens, Elisabeth & van Aalst, Maarten & Bazo, Juan & Fournier-Tombs, Eleonore & Funk, Sebastian & Hess, Jeremy J. & Ranger, Nicola & Lowe, Rachel, 2022. "Epidemiological versus meteorological forecasts: Best practice for linking models to policymaking," International Journal of Forecasting, Elsevier, vol. 38(2), pages 521-526.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    2. Wei Wei & Leonhard Held, 2014. "Calibration tests for count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 787-805, December.
    3. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    4. David Harris & Gael M. Martin & Indeewara Perera & Don S. Poskitt, 2017. "Construction and visualization of optimal confidence sets for frequentist distributional forecasts," Monash Econometrics and Business Statistics Working Papers 9/17, Monash University, Department of Econometrics and Business Statistics.
    5. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
    6. Taillardat, Maxime & Fougères, Anne-Laure & Naveau, Philippe & de Fondeville, Raphaël, 2023. "Evaluating probabilistic forecasts of extremes using continuous ranked probability score distributions," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1448-1459.
    7. Malte Knuppel & Fabian Kruger & Marc-Oliver Pohle, 2022. "Score-based calibration testing for multivariate forecast distributions," Papers 2211.16362, arXiv.org, revised Dec 2023.
    8. Wei, Wei & Balabdaoui, Fadoua & Held, Leonhard, 2017. "Calibration tests for multivariate Gaussian forecasts," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 216-233.
    9. Ng, Jason & Forbes, Catherine S. & Martin, Gael M. & McCabe, Brendan P.M., 2013. "Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 411-430.
    10. Emily S Nightingale & Lloyd A C Chapman & Sridhar Srikantiah & Swaminathan Subramanian & Purushothaman Jambulingam & Johannes Bracher & Mary M Cameron & Graham F Medley, 2020. "A spatio-temporal approach to short-term prediction of visceral leishmaniasis diagnoses in India," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(7), pages 1-21, July.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. László Martinek, 2019. "Analysis of Stochastic Reserving Models By Means of NAIC Claims Data," Risks, MDPI, vol. 7(2), pages 1-27, June.
    13. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2019. "Does a financial accelerator improve forecasts during financial crises? Evidence from Japan with prediction-pooling methods," Journal of Asian Economics, Elsevier, vol. 60(C), pages 45-68.
    14. Julia Braun & Leonhard Held & Bruno Ledergerber, 2012. "Predictive Cross-validation for the Choice of Linear Mixed-Effects Models with Application to Data from the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 68(1), pages 53-61, March.
    15. Samuel Pawel & Leonhard Held, 2020. "Probabilistic forecasting of replication studies," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-23, April.
    16. L. Held & K. Rufibach & F. Balabdaoui, 2010. "A Score Regression Approach to Assess Calibration of Continuous Probabilistic Predictions," Biometrics, The International Biometric Society, vol. 66(4), pages 1295-1305, December.
    17. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    18. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    19. Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Journal of Econometrics, Elsevier, vol. 240(2).
    20. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.