IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220423.html
   My bibliography  Save this article

Forecasting type-specific seasonal influenza after 26 weeks in the United States using influenza activities in other countries

Author

Listed:
  • Soo Beom Choi
  • Juhyeon Kim
  • Insung Ahn

Abstract

To identify countries that have seasonal patterns similar to the time series of influenza surveillance data in the United States and other countries, and to forecast the 2018–2019 seasonal influenza outbreak in the U.S., we collected the surveillance data of 164 countries using the FluNet database, search queries from Google Trends, and temperature from 2010 to 2018. Data for influenza-like illness (ILI) in the U.S. were collected from the Fluview database. We identified the time lag between two time-series which were weekly surveillances for ILI, total influenza (Total INF), influenza A (INF A), and influenza B (INF B) viruses between two countries using cross-correlation analysis. In order to forecast ILI, Total INF, INF A, and INF B of next season (after 26 weeks) in the U.S., we developed prediction models using linear regression, auto regressive integrated moving average, and an artificial neural network (ANN). As a result of cross-correlation analysis between the countries located in northern and southern hemisphere, the seasonal influenza patterns in Australia and Chile showed a high correlation with those of the U.S. 22 weeks and 28 weeks earlier, respectively. The R2 score of ANN models for ILI for validation set in 2015–2019 was 0.758 despite how hard it is to forecast 26 weeks ahead. Our prediction models forecast that the ILI for the U.S. in 2018–2019 may be later and less severe than those in 2017–2018, judging from the influenza activity for Australia and Chile in 2018. It allows to estimate peak timing, peak intensity, and type-specific influenza activities for next season at 40th week. The correlation between seasonal influenza patterns in the U.S., Australia, and Chile could be used to forecast the next seasonal influenza pattern, which can help to determine influenza vaccine strategy approximately six months ahead in the U.S.

Suggested Citation

  • Soo Beom Choi & Juhyeon Kim & Insung Ahn, 2019. "Forecasting type-specific seasonal influenza after 26 weeks in the United States using influenza activities in other countries," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
  • Handle: RePEc:plo:pone00:0220423
    DOI: 10.1371/journal.pone.0220423
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220423
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220423&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Radina P Soebiyanto & Farida Adimi & Richard K Kiang, 2010. "Modeling and Predicting Seasonal Influenza Transmission in Warm Regions Using Climatological Parameters," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-10, March.
    2. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    3. Jean-Paul Chretien & Dylan George & Jeffrey Shaman & Rohit A Chitale & F Ellis McKenzie, 2014. "Influenza Forecasting in Human Populations: A Scoping Review," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    4. Arora, Vishal S. & McKee, Martin & Stuckler, David, 2019. "Google Trends: Opportunities and limitations in health and health policy research," Health Policy, Elsevier, vol. 123(3), pages 338-341.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Sycinska-Dziarnowska & Iwona Paradowska-Stankiewicz, 2020. "Dental Challenges and the Needs of the Population during the Covid-19 Pandemic Period. Real-Time Surveillance Using Google Trends," IJERPH, MDPI, vol. 17(23), pages 1-11, December.
    2. Soo Beom Choi & Insung Ahn, 2020. "Forecasting imported COVID-19 cases in South Korea using mobile roaming data," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-10, November.
    3. Soo Beom Choi & Insung Ahn, 2020. "Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    2. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    3. Artur Strzelecki, 2020. "Google Medical Update: Why Is the Search Engine Decreasing Visibility of Health and Medical Information Websites?," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    4. Gamze Bayın Donar & Seda Aydan, 2022. "Association of COVID‐19 with lifestyle behaviours and socio‐economic variables in Turkey: An analysis of Google Trends," International Journal of Health Planning and Management, Wiley Blackwell, vol. 37(1), pages 281-300, January.
    5. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    6. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    7. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    8. Daniel E. O'Leary & Veda C. Storey, 2020. "A Google–Wikipedia–Twitter Model as a Leading Indicator of the Numbers of Coronavirus Deaths," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(3), pages 151-158, July.
    9. Soo Beom Choi & Insung Ahn, 2020. "Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    10. Teresa K Yamana & Sasikiran Kandula & Jeffrey Shaman, 2017. "Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-17, November.
    11. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    12. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    13. Ishani Chaudhuri & Parthajit Kayal, 2022. "Predicting Power of Ticker Search Volume in Indian Stock Market," Working Papers 2022-214, Madras School of Economics,Chennai,India.
    14. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    15. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    16. Markowitz, Sara & Nesson, Erik & Robinson, Joshua J., 2019. "The effects of employment on influenza rates," Economics & Human Biology, Elsevier, vol. 34(C), pages 286-295.
    17. Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
    18. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    19. Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
    20. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.