IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005331.html
   My bibliography  Save this article

Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks

Author

Listed:
  • Fabian Fröhlich
  • Barbara Kaltenbacher
  • Fabian J Theis
  • Jan Hasenauer

Abstract

Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics.Author Summary: In this manuscript, we introduce a scalable method for parameter estimation for genome-scale biochemical reaction networks. Mechanistic models for genome-scale biochemical reaction networks describe the behavior of thousands of chemical species using thousands of parameters. Standard methods for parameter estimation are usually computationally intractable at these scales. Adjoint sensitivity based approaches have been suggested to have superior scalability but any rigorous evaluation is lacking. We implement a toolbox for adjoint sensitivity analysis for biochemical reaction network which also supports the import of SBML models. We show by means of a set of benchmark models that adjoint sensitivity based approaches unequivocally outperform standard approaches for large-scale models and that the achieved speedup increases with respect to both the number of parameters and the number of chemical species in the model. This demonstrates the applicability of adjoint sensitivity based approaches to parameter estimation for genome-scale mechanistic model. The MATLAB toolbox implementing the developed methods is available from http://ICB-DCM.github.io/AMICI/.

Suggested Citation

  • Fabian Fröhlich & Barbara Kaltenbacher & Fabian J Theis & Jan Hasenauer, 2017. "Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-18, January.
  • Handle: RePEc:plo:pcbi00:1005331
    DOI: 10.1371/journal.pcbi.1005331
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005331
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005331&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Kitano, 2002. "Computational systems biology," Nature, Nature, vol. 420(6912), pages 206-210, November.
    2. Mathias Ganter & Hans-Michael Kaltenbach & Jörg Stelling, 2014. "Predicting network functions with nested patterns," Nature Communications, Nature, vol. 5(1), pages 1-10, May.
    3. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    4. Andreas Raue & Marcel Schilling & Julie Bachmann & Andrew Matteson & Max Schelke & Daniel Kaschek & Sabine Hug & Clemens Kreutz & Brian D Harms & Fabian J Theis & Ursula Klingmüller & Jens Timmer, 2013. "Lessons Learned from Quantitative Dynamical Modeling in Systems Biology," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonard Schmiester & Yannik Schälte & Frank T Bergmann & Tacio Camba & Erika Dudkin & Janine Egert & Fabian Fröhlich & Lara Fuhrmann & Adrian L Hauber & Svenja Kemmer & Polina Lakrisenko & Carolin Loo, 2021. "PEtab—Interoperable specification of parameter estimation problems in systems biology," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-10, January.
    2. Daniel J Lugar & Ganesh Sriram, 2022. "Isotope-assisted metabolic flux analysis as an equality-constrained nonlinear program for improved scalability and robustness," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-26, March.
    3. Abolfazl Ramezanpour & Alireza Mashaghi, 2020. "Disease evolution in reaction networks: Implications for a diagnostic problem," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-17, June.
    4. Cemal Erdem & Arnab Mutsuddy & Ethan M. Bensman & William B. Dodd & Michael M. Saint-Antoine & Mehdi Bouhaddou & Robert C. Blake & Sean M. Gross & Laura M. Heiser & F. Alex Feltus & Marc R. Birtwistle, 2022. "A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Sungho Shin & Ophelia S Venturelli & Victor M Zavala, 2019. "Scalable nonlinear programming framework for parameter estimation in dynamic biological system models," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Fröhlich & Philipp Thomas & Atefeh Kazeroonian & Fabian J Theis & Ramon Grima & Jan Hasenauer, 2016. "Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-28, July.
    2. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    3. Jia Liu & John M. Maheu & Yong Song, 2024. "Identification and forecasting of bull and bear markets using multivariate returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
    4. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    5. Vanhatalo, Jarno & Veneranta, Lari & Hudd, Richard, 2012. "Species distribution modeling with Gaussian processes: A case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae," Ecological Modelling, Elsevier, vol. 228(C), pages 49-58.
    6. Will Penny & Biswa Sengupta, 2016. "Annealed Importance Sampling for Neural Mass Models," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-25, March.
    7. Zarezadeh Zakarya & Costantini Giovanni, 2019. "Particle diffusion Monte Carlo (PDMC)," Monte Carlo Methods and Applications, De Gruyter, vol. 25(2), pages 121-130, June.
    8. Michael L. Polemis & Mike G. Tsionas, 2019. "Bayesian nonlinear panel cointegration: an empirical application to the EKC hypothesis," Letters in Spatial and Resource Sciences, Springer, vol. 12(2), pages 113-120, August.
    9. Agudze, Komla M. & Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco, 2022. "Markov switching panel with endogenous synchronization effects," Journal of Econometrics, Elsevier, vol. 230(2), pages 281-298.
    10. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    11. Tsionas, Mike G. & Izzeldin, Marwan, 2018. "Smooth approximations to monotone concave functions in production analysis: An alternative to nonparametric concave least squares," European Journal of Operational Research, Elsevier, vol. 271(3), pages 797-807.
    12. Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 2020_09, Business School - Economics, University of Glasgow.
    13. Valdemar Melicher & Tom Haber & Wim Vanroose, 2017. "Fast derivatives of likelihood functionals for ODE based models using adjoint-state method," Computational Statistics, Springer, vol. 32(4), pages 1621-1643, December.
    14. Chandra, Yanto & Wilkinson, Ian F., 2017. "Firm internationalization from a network-centric complex-systems perspective," Journal of World Business, Elsevier, vol. 52(5), pages 691-701.
    15. Carlos A. Abanto-Valle & Gabriel Rodríguez & Hernán B. Garrafa-Aragón, 2020. "Stochastic Volatility in Mean: Empirical Evidence from Stock Latin American Markets," Documentos de Trabajo / Working Papers 2020-481, Departamento de Economía - Pontificia Universidad Católica del Perú.
    16. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    17. Mika Gustafsson & Michael Hörnquist, 2010. "Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-8, February.
    18. Elba Raimúndez & Simone Keller & Gwen Zwingenberger & Karolin Ebert & Sabine Hug & Fabian J Theis & Dieter Maier & Birgit Luber & Jan Hasenauer, 2020. "Model-based analysis of response and resistance factors of cetuximab treatment in gastric cancer cell lines," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-21, March.
    19. Assaf, A. George & Tsionas, Mike & Oh, Haemoon, 2018. "The time has come: Toward Bayesian SEM estimation in tourism research," Tourism Management, Elsevier, vol. 64(C), pages 98-109.
    20. Ruben Loaiza-Maya & Didier Nibbering & Dan Zhu, 2023. "Hybrid unadjusted Langevin methods for high-dimensional latent variable models," Papers 2306.14445, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.