IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006828.html
   My bibliography  Save this article

Scalable nonlinear programming framework for parameter estimation in dynamic biological system models

Author

Listed:
  • Sungho Shin
  • Ophelia S Venturelli
  • Victor M Zavala

Abstract

We present a nonlinear programming (NLP) framework for the scalable solution of parameter estimation problems that arise in dynamic modeling of biological systems. Such problems are computationally challenging because they often involve highly nonlinear and stiff differential equations as well as many experimental data sets and parameters. The proposed framework uses cutting-edge modeling and solution tools which are computationally efficient, robust, and easy-to-use. Specifically, our framework uses a time discretization approach that: i) avoids repetitive simulations of the dynamic model, ii) enables fully algebraic model implementations and computation of derivatives, and iii) enables the use of computationally efficient nonlinear interior point solvers that exploit sparse and structured linear algebra techniques. We demonstrate these capabilities by solving estimation problems for synthetic human gut microbiome community models. We show that an instance with 156 parameters, 144 differential equations, and 1,704 experimental data points can be solved in less than 3 minutes using our proposed framework (while an off-the-shelf simulation-based solution framework requires over 7 hours). We also create large instances to show that the proposed framework is scalable and can solve problems with up to 2,352 parameters, 2,304 differential equations, and 20,352 data points in less than 15 minutes. The proposed framework is flexible and easy-to-use, can be broadly applied to dynamic models of biological systems, and enables the implementation of sophisticated estimation techniques to quantify parameter uncertainty, to diagnose observability/uniqueness issues, to perform model selection, and to handle outliers.Author summary: Constructing and validating dynamic models of biological systems spanning biomolecular networks to ecological systems is a challenging problem. Here we present a scalable computational framework to rapidly infer parameters in complex dynamic models of biological systems from large-scale experimental data. The framework was applied to infer parameters of a synthetic microbial community model from large-scale time series data. We also demonstrate that this framework can be used to analyze parameter uncertainty, to diagnose whether the experimental data are sufficient to uniquely determine the parameters, to determine the model that best describes the data, and to infer parameters in the face of data outliers.

Suggested Citation

  • Sungho Shin & Ophelia S Venturelli & Victor M Zavala, 2019. "Scalable nonlinear programming framework for parameter estimation in dynamic biological system models," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-29, March.
  • Handle: RePEc:plo:pcbi00:1006828
    DOI: 10.1371/journal.pcbi.1006828
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006828
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006828&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fabian Fröhlich & Barbara Kaltenbacher & Fabian J Theis & Jan Hasenauer, 2017. "Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-18, January.
    2. Arvind Raghunathan & J. PÉRez-Correa & Eduardo Agosin & Lorenz Biegler, 2006. "Parameter estimation in metabolic flux balance models for batch fermentation—Formulation & Solution using Differential Variational Inequalities (DVIs)," Annals of Operations Research, Springer, vol. 148(1), pages 251-270, November.
    3. Yankai Cao & Carl D. Laird & Victor M. Zavala, 2016. "Clustering-based preconditioning for stochastic programs," Computational Optimization and Applications, Springer, vol. 64(2), pages 379-406, June.
    4. Gabriele Lillacci & Mustafa Khammash, 2010. "Parameter Estimation and Model Selection in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
    5. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Tong & Duo Zhang & Zhijiang Shao & Xiaojin Huang, 2023. "Global Model Calibration of High-Temperature Gas-Cooled Reactor Pebble-Bed Module Using an Adaptive Experimental Design," Energies, MDPI, vol. 16(12), pages 1-25, June.
    2. Timothy Haas, 2020. "Developing political-ecological theory: The need for many-task computing," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-26, November.
    3. Daniel J Lugar & Ganesh Sriram, 2022. "Isotope-assisted metabolic flux analysis as an equality-constrained nonlinear program for improved scalability and robustness," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    2. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    3. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    4. Giovanni Masala & Filippo Petroni, 2023. "Drawdown risk measures for asset portfolios with high frequency data," Annals of Finance, Springer, vol. 19(2), pages 265-289, June.
    5. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    6. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    7. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    8. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    9. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2013. "A comparison of the original and revised Basel market risk frameworks for regulating bank capital," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 249-268.
    10. David Neděla & Sergio Ortobelli & Tomáš Tichý, 2024. "Mean–variance vs trend–risk portfolio selection," Review of Managerial Science, Springer, vol. 18(7), pages 2047-2078, July.
    11. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    12. Li, Bo & Hou, Peng-Wen & Chen, Ping & Li, Qing-Hua, 2016. "Pricing strategy and coordination in a dual channel supply chain with a risk-averse retailer," International Journal of Production Economics, Elsevier, vol. 178(C), pages 154-168.
    13. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    14. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    15. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    16. Mínguez, R. & Conejo, A.J. & García-Bertrand, R., 2011. "Reliability and decomposition techniques to solve certain class of stochastic programming problems," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 314-323.
    17. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    18. Jia Liu & Cuixia Li, 2023. "Dynamic Game Analysis on Cooperative Advertising Strategy in a Manufacturer-Led Supply Chain with Risk Aversion," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    19. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.
    20. Beraldi, Patrizia, 2024. "Green retailer: A stochastic bi-level approach to support investment decisions in sustainable energy systems," Operations Research Perspectives, Elsevier, vol. 12(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.