IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0074335.html
   My bibliography  Save this article

Lessons Learned from Quantitative Dynamical Modeling in Systems Biology

Author

Listed:
  • Andreas Raue
  • Marcel Schilling
  • Julie Bachmann
  • Andrew Matteson
  • Max Schelke
  • Daniel Kaschek
  • Sabine Hug
  • Clemens Kreutz
  • Brian D Harms
  • Fabian J Theis
  • Ursula Klingmüller
  • Jens Timmer

Abstract

Due to the high complexity of biological data it is difficult to disentangle cellular processes relying only on intuitive interpretation of measurements. A Systems Biology approach that combines quantitative experimental data with dynamic mathematical modeling promises to yield deeper insights into these processes. Nevertheless, with growing complexity and increasing amount of quantitative experimental data, building realistic and reliable mathematical models can become a challenging task: the quality of experimental data has to be assessed objectively, unknown model parameters need to be estimated from the experimental data, and numerical calculations need to be precise and efficient.Here, we discuss, compare and characterize the performance of computational methods throughout the process of quantitative dynamic modeling using two previously established examples, for which quantitative, dose- and time-resolved experimental data are available. In particular, we present an approach that allows to determine the quality of experimental data in an efficient, objective and automated manner. Using this approach data generated by different measurement techniques and even in single replicates can be reliably used for mathematical modeling. For the estimation of unknown model parameters, the performance of different optimization algorithms was compared systematically. Our results show that deterministic derivative-based optimization employing the sensitivity equations in combination with a multi-start strategy based on latin hypercube sampling outperforms the other methods by orders of magnitude in accuracy and speed. Finally, we investigated transformations that yield a more efficient parameterization of the model and therefore lead to a further enhancement in optimization performance. We provide a freely available open source software package that implements the algorithms and examples compared here.

Suggested Citation

  • Andreas Raue & Marcel Schilling & Julie Bachmann & Andrew Matteson & Max Schelke & Daniel Kaschek & Sabine Hug & Clemens Kreutz & Brian D Harms & Fabian J Theis & Ursula Klingmüller & Jens Timmer, 2013. "Lessons Learned from Quantitative Dynamical Modeling in Systems Biology," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-17, September.
  • Handle: RePEc:plo:pone00:0074335
    DOI: 10.1371/journal.pone.0074335
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074335
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0074335&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0074335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sabrina L. Spencer & Suzanne Gaudet & John G. Albeck & John M. Burke & Peter K. Sorger, 2009. "Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis," Nature, Nature, vol. 459(7245), pages 428-432, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Fröhlich & Philipp Thomas & Atefeh Kazeroonian & Fabian J Theis & Ramon Grima & Jan Hasenauer, 2016. "Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-28, July.
    2. Fabian Fröhlich & Barbara Kaltenbacher & Fabian J Theis & Jan Hasenauer, 2017. "Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-18, January.
    3. Neveen Ali Eshtewy & Lena Scholz & Andreas Kremling, 2023. "Parameter Estimation for a Kinetic Model of a Cellular System Using Model Order Reduction Method," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    4. Valdemar Melicher & Tom Haber & Wim Vanroose, 2017. "Fast derivatives of likelihood functionals for ODE based models using adjoint-state method," Computational Statistics, Springer, vol. 32(4), pages 1621-1643, December.
    5. Jin, Ding & Thube, Sneha Dattatraya & Hedtrich, Johannes & Henning, Christian & Delzeit, Ruth, 2019. "A Baseline Calibration Procedure for CGE models: An Application for DART," Conference papers 333057, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Diane Lefaudeux & Supriya Sen & Kevin Jiang & Alexander Hoffmann, 2022. "Kinetics of mRNA nuclear export regulate innate immune response gene expression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Elba Raimúndez & Simone Keller & Gwen Zwingenberger & Karolin Ebert & Sabine Hug & Fabian J Theis & Dieter Maier & Birgit Luber & Jan Hasenauer, 2020. "Model-based analysis of response and resistance factors of cetuximab treatment in gastric cancer cell lines," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    2. Lucy Ham & Megan A. Coomer & Kaan Öcal & Ramon Grima & Michael P. H. Stumpf, 2024. "A stochastic vs deterministic perspective on the timing of cellular events," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Artémis Llamosi & Andres M Gonzalez-Vargas & Cristian Versari & Eugenio Cinquemani & Giancarlo Ferrari-Trecate & Pascal Hersen & Gregory Batt, 2016. "What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
    4. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    5. Andreas Doncic & Umut Eser & Oguzhan Atay & Jan M Skotheim, 2013. "An Algorithm to Automate Yeast Segmentation and Tracking," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    6. Szymon Stoma & Alexandre Donzé & François Bertaux & Oded Maler & Gregory Batt, 2013. "STL-based Analysis of TRAIL-induced Apoptosis Challenges the Notion of Type I/Type II Cell Line Classification," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-14, May.
    7. Dirke Imig & Nadine Pollak & Frank Allgöwer & Markus Rehm, 2020. "Sample-based modeling reveals bidirectional interplay between cell cycle progression and extrinsic apoptosis," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-17, June.
    8. Christopher C Govern & Arup K Chakraborty, 2013. "Stochastic Responses May Allow Genetically Diverse Cell Populations to Optimize Performance with Simpler Signaling Networks," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    9. Chad Liu & Chuan-Yuan Li & Fan Yuan, 2014. "Mathematical Modeling of the Phoenix Rising Pathway," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-10, February.
    10. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    11. Subhadip Raychaudhuri, 2010. "A Minimal Model of Signaling Network Elucidates Cell-to-Cell Stochastic Variability in Apoptosis," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-7, August.
    12. Leighton T Izu & Tamás Bányász & Ye Chen-Izu, 2015. "Optimizing Population Variability to Maximize Benefit," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    13. Suzanne Gaudet & Sabrina L Spencer & William W Chen & Peter K Sorger, 2012. "Exploring the Contextual Sensitivity of Factors that Determine Cell-to-Cell Variability in Receptor-Mediated Apoptosis," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-15, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0074335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.