IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005174.html
   My bibliography  Save this article

Temperature-Dependent Model of Multi-step Transcription Initiation in Escherichia coli Based on Live Single-Cell Measurements

Author

Listed:
  • Samuel M D Oliveira
  • Antti Häkkinen
  • Jason Lloyd-Price
  • Huy Tran
  • Vinodh Kandavalli
  • Andre S Ribeiro

Abstract

Transcription kinetics is limited by its initiation steps, which differ between promoters and with intra- and extracellular conditions. Regulation of these steps allows tuning both the rate and stochasticity of RNA production. We used time-lapse, single-RNA microscopy measurements in live Escherichia coli to study how the rate-limiting steps in initiation of the Plac/ara-1 promoter change with temperature and induction scheme. For this, we compared detailed stochastic models fit to the empirical data in maximum likelihood sense using statistical methods. Using this analysis, we found that temperature affects the rate limiting steps unequally, as nonlinear changes in the closed complex formation suffice to explain the differences in transcription dynamics between conditions. Meanwhile, a similar analysis of the PtetA promoter revealed that it has a different rate limiting step configuration, with temperature regulating different steps. Finally, we used the derived models to explore a possible cause for why the identified steps are preferred as the main cause for behavior modifications with temperature: we find that transcription dynamics is either insensitive or responds reciprocally to changes in the other steps. Our results suggests that different promoters employ different rate limiting step patterns that control not only their rate and variability, but also their sensitivity to environmental changes.Author Summary: Temperature affects the behavior of cells, such as their growth rate. However, it is not well understood how these changes result from the changes at the single molecule level. We observed the production of individual RNA molecules in live cells under a wide range of temperatures. This allowed us to determine not only how fast they are produced, but also how much variability there is in this process. Next, we fit a stochastic model to the data to identify which rate-limiting steps during RNA production are responsible for the observed differences between conditions. We found that genes differ in how their RNA production is limited by different steps and in how these are affected by the temperature, which explains why different genes respond differently to temperature fluctuations.

Suggested Citation

  • Samuel M D Oliveira & Antti Häkkinen & Jason Lloyd-Price & Huy Tran & Vinodh Kandavalli & Andre S Ribeiro, 2016. "Temperature-Dependent Model of Multi-step Transcription Initiation in Escherichia coli Based on Live Single-Cell Measurements," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-18, October.
  • Handle: RePEc:plo:pcbi00:1005174
    DOI: 10.1371/journal.pcbi.1005174
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005174
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005174&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    2. Jesse Stricker & Scott Cookson & Matthew R. Bennett & William H. Mather & Lev S. Tsimring & Jeff Hasty, 2008. "A fast, robust and tunable synthetic gene oscillator," Nature, Nature, vol. 456(7221), pages 516-519, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    2. Amy L. Hughes & Aleksander T. Szczurek & Jessica R. Kelley & Anna Lastuvkova & Anne H. Turberfield & Emilia Dimitrova & Neil P. Blackledge & Robert J. Klose, 2023. "A CpG island-encoded mechanism protects genes from premature transcription termination," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Alistair N Boettiger & Peter L Ralph & Steven N Evans, 2011. "Transcriptional Regulation: Effects of Promoter Proximal Pausing on Speed, Synchrony and Reliability," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    4. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    5. Qiwen Sun & Zhaohang Cai & Chunjuan Zhu, 2022. "A Novel Dynamical Regulation of mRNA Distribution by Cross-Talking Pathways," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
    6. Stuart Aitken & Marie-Cécile Robert & Ross D Alexander & Igor Goryanin & Edouard Bertrand & Jean D Beggs, 2010. "Processivity and Coupling in Messenger RNA Transcription," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-12, January.
    7. Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
    8. H. Dehne & A. Reitenbach & A. R. Bausch, 2021. "Reversible and spatiotemporal control of colloidal structure formation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Singh, Abhyudai & Vahdat, Zahra & Xu, Zikai, 2019. "Time-triggered stochastic hybrid systems with two timer-dependent resets," OSF Preprints u8fzg, Center for Open Science.
    10. Muir Morrison & Manuel Razo-Mejia & Rob Phillips, 2021. "Reconciling kinetic and thermodynamic models of bacterial transcription," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-30, January.
    11. Astakhov, Sergey & Astakhov, Oleg & Fadeeva, Natalia & Astakhov, Vladimir, 2021. "Multistability, quasiperiodicity and chaos in a self-oscillating ring dynamical system with three degrees of freedom based on the van der Pol generator," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    12. Elijah Roberts & Andrew Magis & Julio O Ortiz & Wolfgang Baumeister & Zaida Luthey-Schulten, 2011. "Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-21, March.
    13. Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
    14. Ross D. Jones & Yili Qian & Katherine Ilia & Benjamin Wang & Michael T. Laub & Domitilla Del Vecchio & Ron Weiss, 2022. "Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Xinyu Hu & Bob van Sluijs & Óscar García-Blay & Yury Stepanov & Koen Rietrae & Wilhelm T. S. Huck & Maike M. K. Hansen, 2024. "ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Song, Yi & Xu, Wei & Wei, Wei & Niu, Lizhi, 2023. "Dynamical transition of phenotypic states in breast cancer system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    17. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    18. Marc S Sherman & Barak A Cohen, 2014. "A Computational Framework for Analyzing Stochasticity in Gene Expression," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-13, May.
    19. Jingyao Wang & Shihe Zhang & Hongfang Lu & Heng Xu, 2022. "Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Anissa Guillemin & Ronan Duchesne & Fabien Crauste & Sandrine Gonin-Giraud & Olivier Gandrillon, 2019. "Drugs modulating stochastic gene expression affect the erythroid differentiation process," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.