IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v45y2012i5p577-587.html
   My bibliography  Save this article

Periodic perturbation of genetic oscillations

Author

Listed:
  • Zhdanov, Vladimir P.

Abstract

Kinetics of gene expression may be oscillatory due to the feedbacks between the mRNA, non-coding RNA and protein synthesis. In complex genetic networks, the kinetic oscillations generated in one subnetwork may influence oscillations in another subnetwork. To clarify what may happen in such situations, we have performed a mean-field analysis and Monte Carlo simulations of periodic perturbation of the oscillatory kinetics of the simplest genetic network including a gene with negative regulation of the mRNA production by protein, obtained via mRNA translation and two steps of conversion. Our analysis shows universal and specific features of the kinetics under consideration. Our simulations indicate that due to fluctuations only some of these features can really be observed. Specifically, the main frequencies obtained by the Fourier expansion of the mean-field and Monte Carlo kinetics are found to be often similar except that the Monte Carlo distribution of frequencies near the main frequencies is somewhat wider.

Suggested Citation

  • Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
  • Handle: RePEc:eee:chsofr:v:45:y:2012:i:5:p:577-587
    DOI: 10.1016/j.chaos.2011.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077911002402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2011.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Fengpan & Lu, Jinrui & Liu, Zhiguang & Chen, Aimin & Shen, Jianwei, 2010. "Effects of nonlinear degradation of protein on the oscillatory dynamics in a simple gene regulatory network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1286-1295.
    2. Jesse Stricker & Scott Cookson & Matthew R. Bennett & William H. Mather & Lev S. Tsimring & Jeff Hasty, 2008. "A fast, robust and tunable synthetic gene oscillator," Nature, Nature, vol. 456(7221), pages 516-519, November.
    3. M. Perc, 2009. "Stochastic resonance on paced genetic regulatory small-world networks: effects of asymmetric potentials," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 69(1), pages 147-153, May.
    4. G. Bordyugov & A. Granada & H. Herzel, 2011. "How coupling determines the entrainment of circadian clocks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 82(3), pages 227-234, August.
    5. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    6. Zhdanov, Vladimir P., 2011. "Periodic perturbation of the bistable kinetics of gene expression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 57-64.
    7. Matthew R. Bennett & Wyming Lee Pang & Natalie A. Ostroff & Bridget L. Baumgartner & Sujata Nayak & Lev S. Tsimring & Jeff Hasty, 2008. "Metabolic gene regulation in a dynamically changing environment," Nature, Nature, vol. 454(7208), pages 1119-1122, August.
    8. Shen, Jianwei & Liu, Zengrong & Zheng, Weixing & Xu, Fengdan & Chen, Luonan, 2009. "Oscillatory dynamics in a simple gene regulatory network mediated by small RNAs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2995-3000.
    9. Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.
    10. Y. Kobayashi & T. Shibata & Y. Kuramoto & A. S. Mikhailov, 2010. "Evolutionary design of oscillatory genetic networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 76(1), pages 167-178, July.
    11. Mengel, Benedicte & Krishna, Sandeep & Jensen, Mogens H. & Trusina, Ala, 2012. "Nested feedback loops in gene regulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 100-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Marucci & David A W Barton & Irene Cantone & Maria Aurelia Ricci & Maria Pia Cosma & Stefania Santini & Diego di Bernardo & Mario di Bernardo, 2009. "How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    2. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    3. Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
    4. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    5. Huang, Chengdai & Cao, Jinde & Xiao, Min, 2016. "Hybrid control on bifurcation for a delayed fractional gene regulatory network," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 19-29.
    6. Samanthe M Lyons & Wenlong Xu & June Medford & Ashok Prasad, 2014. "Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-16, March.
    7. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    8. Luna Rizik & Loai Danial & Mouna Habib & Ron Weiss & Ramez Daniel, 2022. "Synthetic neuromorphic computing in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Rabajante, Jomar Fajardo & Talaue, Cherryl Ortega, 2015. "Equilibrium switching and mathematical properties of nonlinear interaction networks with concurrent antagonism and self-stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 166-182.
    10. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    11. Ankit Gupta & Corentin Briat & Mustafa Khammash, 2014. "A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-16, June.
    12. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    13. Kanakov, Oleg & Chen, Shangbin & Zaikin, Alexey, 2024. "Learning by selective plasmid loss for intracellular synthetic classifiers," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    14. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Duncan Ingram & Guy-Bart Stan, 2023. "Modelling genetic stability in engineered cell populations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Volkov, Evgeny & Hellen, Edward H., 2021. "The effect of characteristic times on collective modes of two quorum sensing coupled identical ring oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.
    18. Lu, Wen & Zhang, Yuhao & Qian, Yu & Pandey, Vikas & Qu, Zhilin & Zhang, Zhaoyang, 2021. "Bursting and complex oscillatory patterns in a gene regulatory network model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Juliane Liepe & Sarah Filippi & Michał Komorowski & Michael P H Stumpf, 2013. "Maximizing the Information Content of Experiments in Systems Biology," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-13, January.
    20. Šimonka, Vito & Fras, Maja & Gosak, Marko, 2015. "Stochastic simulation of the circadian rhythmicity in the SCN neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 1-10.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:45:y:2012:i:5:p:577-587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.