IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004881.html
   My bibliography  Save this article

Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory

Author

Listed:
  • Evgeni V Nikolaev
  • Eduardo D Sontag

Abstract

Synthetic constructs in biotechnology, biocomputing, and modern gene therapy interventions are often based on plasmids or transfected circuits which implement some form of “on-off” switch. For example, the expression of a protein used for therapeutic purposes might be triggered by the recognition of a specific combination of inducers (e.g., antigens), and memory of this event should be maintained across a cell population until a specific stimulus commands a coordinated shut-off. The robustness of such a design is hampered by molecular (“intrinsic”) or environmental (“extrinsic”) noise, which may lead to spontaneous changes of state in a subset of the population and is reflected in the bimodality of protein expression, as measured for example using flow cytometry. In this context, a “majority-vote” correction circuit, which brings deviant cells back into the required state, is highly desirable, and quorum-sensing has been suggested as a way for cells to broadcast their states to the population as a whole so as to facilitate consensus. In this paper, we propose what we believe is the first such a design that has mathematically guaranteed properties of stability and auto-correction under certain conditions. Our approach is guided by concepts and theory from the field of “monotone” dynamical systems developed by M. Hirsch, H. Smith, and others. We benchmark our design by comparing it to an existing design which has been the subject of experimental and theoretical studies, illustrating its superiority in stability and self-correction of synchronization errors. Our stability analysis, based on dynamical systems theory, guarantees global convergence to steady states, ruling out unpredictable (“chaotic”) behaviors and even sustained oscillations in the limit of convergence. These results are valid no matter what are the values of parameters, and are based only on the wiring diagram. The theory is complemented by extensive computational bifurcation analysis, performed for a biochemically-detailed and biologically-relevant model that we developed. Another novel feature of our approach is that our theorems on exponential stability of steady states for homogeneous or mixed populations are valid independently of the number N of cells in the population, which is usually very large (N ≫ 1) and unknown. We prove that the exponential stability depends on relative proportions of each type of state only. While monotone systems theory has been used previously for systems biology analysis, the current work illustrates its power for synthetic biology design, and thus has wider significance well beyond the application to the important problem of coordination of toggle switches.Author Summary: For the last decade, outstanding progress has been made, and considerable practical experience has accumulated, in the construction of elementary genetic circuits that perform various tasks, such as memory storage and logical operations, in response to both exogenous and endogenous stimuli. Using modern molecular “plug-and-play” technologies, various (re-)programmable cellular populations can be engineered, and they can be combined into more complex cellular systems. Among all engineered synthetic circuits, a toggle, a robust bistable switch leading to a binary response dynamics, is the simplest basic synthetic biology device, analogous to the “flip-flop” or latch in electronic design, and it plays a key role in biotechnology, biocomputing, and proposed gene therapies. However, despite many remarkable properties of the existing toggle designs, they must be tightly controlled in order to avoid spontaneous switching between different expression states (loss of long-term memory) or even the breakdown of stability through the generation of stable oscillations. To address this concrete challenge, we have developed a new design for quorum-sensing synthetic toggles, based on monotone dynamical systems theory. Our design is endowed with strong theoretical guarantees that completely exclude unpredictable chaotic behaviors in the limit of convergence, as well as undesired stable oscillations, and leads to robust consensus states.

Suggested Citation

  • Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
  • Handle: RePEc:plo:pcbi00:1004881
    DOI: 10.1371/journal.pcbi.1004881
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004881
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004881&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ramiz Daniel & Jacob R. Rubens & Rahul Sarpeshkar & Timothy K. Lu, 2013. "Synthetic analog computation in living cells," Nature, Nature, vol. 497(7451), pages 619-623, May.
    2. Yi-Hu Dong & Lian-Hui Wang & Jin-Ling Xu & Hai-Bao Zhang & Xi-Fen Zhang & Lian-Hui Zhang, 2001. "Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase," Nature, Nature, vol. 411(6839), pages 813-817, June.
    3. Jesse Stricker & Scott Cookson & Matthew R. Bennett & William H. Mather & Lev S. Tsimring & Jeff Hasty, 2008. "A fast, robust and tunable synthetic gene oscillator," Nature, Nature, vol. 456(7221), pages 516-519, November.
    4. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    5. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamiree Harrison & Enoch Yeung, 2021. "Stability Analysis of Parameter Varying Genetic Toggle Switches Using Koopman Operators," Mathematics, MDPI, vol. 9(23), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luna Rizik & Loai Danial & Mouna Habib & Ron Weiss & Ramez Daniel, 2022. "Synthetic neuromorphic computing in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    3. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    4. Samanthe M Lyons & Wenlong Xu & June Medford & Ashok Prasad, 2014. "Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-16, March.
    5. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    6. Lucia Marucci & David A W Barton & Irene Cantone & Maria Aurelia Ricci & Maria Pia Cosma & Stefania Santini & Diego di Bernardo & Mario di Bernardo, 2009. "How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    7. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    8. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    9. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    10. Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
    11. Chen Jia & Ramon Grima, 2024. "Holimap: an accurate and efficient method for solving stochastic gene network dynamics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    13. Shivang Hina-Nilesh Joshi & Chentao Yong & Andras Gyorgy, 2022. "Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    15. Luis Mier-y-Terán-Romero & Mary Silber & Vassily Hatzimanikatis, 2010. "The Origins of Time-Delay in Template Biopolymerization Processes," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-15, April.
    16. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Liu, Xian & Wang, Jinzhi & Huang, Lin, 2007. "Global synchronization for a class of dynamical complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 543-556.
    19. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    20. Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.