IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27016-x.html
   My bibliography  Save this article

Reversible and spatiotemporal control of colloidal structure formation

Author

Listed:
  • H. Dehne

    (Technische Universität München)

  • A. Reitenbach

    (Technische Universität München)

  • A. R. Bausch

    (Technische Universität München)

Abstract

Tuning colloidal structure formation is a powerful approach to building functional materials, as a wide range of optical and viscoelastic properties can be accessed by the choice of individual building blocks and their interactions. Precise control is achieved by DNA specificity, depletion forces, or geometric constraints and results in a variety of complex structures. Due to the lack of control and reversibility of the interactions, an autonomous oscillating system on a mesoscale without external driving was not feasible until now. Here, we show that tunable DNA reaction circuits controlling linker strand concentrations can drive the dynamic and fully reversible assembly of DNA-functionalized micron-sized particles. The versatility of this approach is demonstrated by programming colloidal interactions in sequential and spatial order to obtain an oscillatory structure formation process on a mesoscopic scale. The experimental results represent an approach for the development of active materials by using DNA reaction networks to scale up the dynamic control of colloidal self-organization.

Suggested Citation

  • H. Dehne & A. Reitenbach & A. R. Bausch, 2021. "Reversible and spatiotemporal control of colloidal structure formation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27016-x
    DOI: 10.1038/s41467-021-27016-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27016-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27016-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sung Yong Park & Abigail K. R. Lytton-Jean & Byeongdu Lee & Steven Weigand & George C. Schatz & Chad A. Mirkin, 2008. "DNA-programmable nanoparticle crystallization," Nature, Nature, vol. 451(7178), pages 553-556, January.
    2. Jesse Stricker & Scott Cookson & Matthew R. Bennett & William H. Mather & Lev S. Tsimring & Jeff Hasty, 2008. "A fast, robust and tunable synthetic gene oscillator," Nature, Nature, vol. 456(7221), pages 516-519, November.
    3. Jie Deng & Andreas Walther, 2020. "ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Yifan Wang & Ian C. Jenkins & James T. McGinley & Talid Sinno & John C. Crocker, 2017. "Colloidal crystals with diamond symmetry at optical lengthscales," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    5. Yu Wang & Yufeng Wang & Xiaolong Zheng & Étienne Ducrot & Jeremy S. Yodh & Marcus Weck & David J. Pine, 2015. "Crystallization of DNA-coated colloids," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Cui & Sophie Marbach & Jeana Aojie Zheng & Miranda Holmes-Cerfon & David J. Pine, 2022. "Comprehensive view of microscopic interactions between DNA-coated colloids," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Alexander Hensley & Thomas E. Videbæk & Hunter Seyforth & William M. Jacobs & W. Benjamin Rogers, 2023. "Macroscopic photonic single crystals via seeded growth of DNA-coated colloids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
    4. Piet J. M. Swinkels & Zhe Gong & Stefano Sacanna & Eva G. Noya & Peter Schall, 2023. "Visualizing defect dynamics by assembling the colloidal graphene lattice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Astakhov, Sergey & Astakhov, Oleg & Fadeeva, Natalia & Astakhov, Vladimir, 2021. "Multistability, quasiperiodicity and chaos in a self-oscillating ring dynamical system with three degrees of freedom based on the van der Pol generator," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
    7. Chad R. Simmons & Tara MacCulloch & Miroslav Krepl & Michael Matthies & Alex Buchberger & Ilyssa Crawford & Jiří Šponer & Petr Šulc & Nicholas Stephanopoulos & Hao Yan, 2022. "The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    9. Pengji Zhou & Sharon C. Glotzer, 2021. "Inverse design of isotropic pair potentials using digital alchemy with a generalized Fourier potential," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(12), pages 1-10, December.
    10. Lucas Henrion & Juan Andres Martinez & Vincent Vandenbroucke & Mathéo Delvenne & Samuel Telek & Andrew Zicler & Alexander Grünberger & Frank Delvigne, 2023. "Fitness cost associated with cell phenotypic switching drives population diversification dynamics and controllability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Samanthe M Lyons & Wenlong Xu & June Medford & Ashok Prasad, 2014. "Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-16, March.
    12. Alan Veliz-Cuba & Andrew J Hirning & Adam A Atanas & Faiza Hussain & Flavia Vancia & Krešimir Josić & Matthew R Bennett, 2015. "Sources of Variability in a Synthetic Gene Oscillator," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-23, December.
    13. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    14. Lucia Marucci & David A W Barton & Irene Cantone & Maria Aurelia Ricci & Maria Pia Cosma & Stefania Santini & Diego di Bernardo & Mario di Bernardo, 2009. "How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    15. Tyler G Moore & Max H Garzon & Russell J Deaton, 2015. "Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-23, September.
    16. Yuqian Tang & Debin Qin & Zhexian Tian & Wenxi Chen & Yuanxi Ma & Jilong Wang & Jianguo Yang & Dalai Yan & Ray Dixon & Yi-Ping Wang, 2023. "Diurnal switches in diazotrophic lifestyle increase nitrogen contribution to cereals," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Sara Molinari & Robert F. Tesoriero & Dong Li & Swetha Sridhar & Rong Cai & Jayashree Soman & Kathleen R. Ryan & Paul D. Ashby & Caroline M. Ajo-Franklin, 2022. "A de novo matrix for macroscopic living materials from bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Nam Heon Cho & Young Bi Kim & Yoon Young Lee & Sang Won Im & Ryeong Myeong Kim & Jeong Won Kim & Seok Daniel Namgung & Hye-Eun Lee & Hyeohn Kim & Jeong Hyun Han & Hye Won Chung & Yoon Ho Lee & Jeong W, 2022. "Adenine oligomer directed synthesis of chiral gold nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    20. Chelsea Y. Hu & Richard M. Murray, 2022. "Layered feedback control overcomes performance trade-off in synthetic biomolecular networks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27016-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.