IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004674.html
   My bibliography  Save this article

Sources of Variability in a Synthetic Gene Oscillator

Author

Listed:
  • Alan Veliz-Cuba
  • Andrew J Hirning
  • Adam A Atanas
  • Faiza Hussain
  • Flavia Vancia
  • Krešimir Josić
  • Matthew R Bennett

Abstract

Synthetic gene oscillators are small, engineered genetic circuits that produce periodic variations in target protein expression. Like other gene circuits, synthetic gene oscillators are noisy and exhibit fluctuations in amplitude and period. Understanding the origins of such variability is key to building predictive models that can guide the rational design of synthetic circuits. Here, we developed a method for determining the impact of different sources of noise in genetic oscillators by measuring the variability in oscillation amplitude and correlations between sister cells. We first used a combination of microfluidic devices and time-lapse fluorescence microscopy to track oscillations in cell lineages across many generations. We found that oscillation amplitude exhibited high cell-to-cell variability, while sister cells remained strongly correlated for many minutes after cell division. To understand how such variability arises, we constructed a computational model that identified the impact of various noise sources across the lineage of an initial cell. When each source of noise was appropriately tuned the model reproduced the experimentally observed amplitude variability and correlations, and accurately predicted outcomes under novel experimental conditions. Our combination of computational modeling and time-lapse data analysis provides a general way to examine the sources of variability in dynamic gene circuits.Author Summary: A goal of synthetic biology is to design genetic circuits using mathematical models that predict circuit function. However, various sources of noise impact gene regulation in different ways. This hinders the development of accurate mathematical models, especially when single-cell accuracy is required. Here, we first experimentally characterize the noisy dynamics of a synthetic gene oscillator at the single-cell level. Then, using measurements obtained from the experiments, we develop a minimal computational model that correctly predicts the statistical behavior of single cells within a growing colony. Our method can be used to construct simple computational models that not only capture the average dynamics of gene circuits, but also the statistical properties of single cells.

Suggested Citation

  • Alan Veliz-Cuba & Andrew J Hirning & Adam A Atanas & Faiza Hussain & Flavia Vancia & Krešimir Josić & Matthew R Bennett, 2015. "Sources of Variability in a Synthetic Gene Oscillator," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-23, December.
  • Handle: RePEc:plo:pcbi00:1004674
    DOI: 10.1371/journal.pcbi.1004674
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004674
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004674&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elijah Roberts & Andrew Magis & Julio O Ortiz & Wolfgang Baumeister & Zaida Luthey-Schulten, 2011. "Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-21, March.
    2. Dmitri Volfson & Jennifer Marciniak & William J. Blake & Natalie Ostroff & Lev S. Tsimring & Jeff Hasty, 2006. "Origins of extrinsic variability in eukaryotic gene expression," Nature, Nature, vol. 439(7078), pages 861-864, February.
    3. Jesse Stricker & Scott Cookson & Matthew R. Bennett & William H. Mather & Lev S. Tsimring & Jeff Hasty, 2008. "A fast, robust and tunable synthetic gene oscillator," Nature, Nature, vol. 456(7221), pages 516-519, November.
    4. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    2. Samanthe M Lyons & Wenlong Xu & June Medford & Ashok Prasad, 2014. "Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-16, March.
    3. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    4. Sara Hooshangi & William E Bentley, 2011. "LsrR Quorum Sensing “Switch” Is Revealed by a Bottom-Up Approach," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-11, September.
    5. Luna Rizik & Loai Danial & Mouna Habib & Ron Weiss & Ramez Daniel, 2022. "Synthetic neuromorphic computing in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
    7. Lucia Marucci & David A W Barton & Irene Cantone & Maria Aurelia Ricci & Maria Pia Cosma & Stefania Santini & Diego di Bernardo & Mario di Bernardo, 2009. "How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    8. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    9. Kudtarkar, Santosh Kumar & Dhadwal, Renu, 2023. "Noise induced bistability in a fluctuating environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    10. Ci Kong & Yin Yang & Tiancong Qi & Shuyi Zhang, 2025. "Predictive genetic circuit design for phenotype reprogramming in plants," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    11. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    12. Stuart Aitken & Marie-Cécile Robert & Ross D Alexander & Igor Goryanin & Edouard Bertrand & Jean D Beggs, 2010. "Processivity and Coupling in Messenger RNA Transcription," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-12, January.
    13. Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
    14. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    15. Echeverria, Carlos & Herrera, José L. & Alvarez-Llamoza, Orlando & Morales, Miguel & Tucci, Kay, 2019. "Damping and clustering into crowded environment of catalytic chemical oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 297-306.
    16. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Bonassi Fernando V. & You Lingchong & West Mike, 2011. "Bayesian Learning from Marginal Data in Bionetwork Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, October.
    18. Zhdanov, Vladimir P., 2011. "Periodic perturbation of the bistable kinetics of gene expression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 57-64.
    19. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.