IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v439y2006i7078d10.1038_nature04281.html
   My bibliography  Save this article

Origins of extrinsic variability in eukaryotic gene expression

Author

Listed:
  • Dmitri Volfson

    (University of California San Diego
    University of California San Diego)

  • Jennifer Marciniak

    (University of California San Diego)

  • William J. Blake

    (Boston University)

  • Natalie Ostroff

    (University of California San Diego)

  • Lev S. Tsimring

    (University of California San Diego)

  • Jeff Hasty

    (University of California San Diego)

Abstract

Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution1,2, determination of cell fates3,4 and the development of genetic disease5,6. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes simultaneously7,8,9,10, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modelling11,12,13,14,15,16,17,18 with fluorescence data generated from multiple promoter–gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous lower limit for expression variability. A second source, which is modelled as originating from a common upstream transcription factor, exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene9. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.

Suggested Citation

  • Dmitri Volfson & Jennifer Marciniak & William J. Blake & Natalie Ostroff & Lev S. Tsimring & Jeff Hasty, 2006. "Origins of extrinsic variability in eukaryotic gene expression," Nature, Nature, vol. 439(7078), pages 861-864, February.
  • Handle: RePEc:nat:nature:v:439:y:2006:i:7078:d:10.1038_nature04281
    DOI: 10.1038/nature04281
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04281
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    2. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    3. Alan Veliz-Cuba & Andrew J Hirning & Adam A Atanas & Faiza Hussain & Flavia Vancia & Krešimir Josić & Matthew R Bennett, 2015. "Sources of Variability in a Synthetic Gene Oscillator," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-23, December.
    4. Fu Audrey Qiuyan & Pachter Lior, 2016. "Estimating intrinsic and extrinsic noise from single-cell gene expression measurements," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(6), pages 447-471, December.
    5. Christoph Zechner & Heinz Koeppl, 2014. "Uncoupled Analysis of Stochastic Reaction Networks in Fluctuating Environments," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-9, December.
    6. Marc S Sherman & Barak A Cohen, 2014. "A Computational Framework for Analyzing Stochasticity in Gene Expression," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-13, May.
    7. Stuart Aitken & Marie-Cécile Robert & Ross D Alexander & Igor Goryanin & Edouard Bertrand & Jean D Beggs, 2010. "Processivity and Coupling in Messenger RNA Transcription," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-12, January.
    8. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:439:y:2006:i:7078:d:10.1038_nature04281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.