IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008389.html
   My bibliography  Save this article

Precise determination of input-output mapping for multimodal gene circuits using data from transient transfection

Author

Listed:
  • Christoph Stelzer
  • Yaakov Benenson

Abstract

The mapping of molecular inputs to their molecular outputs (input/output, I/O mapping) is an important characteristic of gene circuits, both natural and synthetic. Experimental determination of such mappings for synthetic circuits is best performed using stably integrated genetic constructs. In mammalian cells, stable integration of complex circuits is a time-consuming process that hampers rapid characterization of multiple circuit variants. On the other hand, transient transfection is quick. However, it is an extremely noisy process and it is unclear whether the obtained data have any relevance to the input/output mapping of a circuit obtained in the case of a stable integration. Here we describe a data processing workflow, Peakfinder algorithm for flow cytometry data (PFAFF), that allows extracting precise input/output mapping from single-cell protein expression data gathered by flow cytometry after a transient transfection. The workflow builds on the numerically-proven observation that the multivariate modes of input and output expression of multi-channel flow cytometry datasets, pre-binned by the expression level of an independent transfection reporter gene, harbor cells with circuit gene copy numbers distributions that depend deterministically on the properties of a bin. We validate our method by simulating flow cytometry data for seven multi-node circuit architectures, including a complex bi-modal circuit, under stable integration and transient transfection scenarios. The workflow applied to the simulated transient transfection data results in similar conclusions to those reached with simulated stable integration data. This indicates that the input/output mapping derived from transient transfection data using our method is an excellent approximation of the ground truth. Thus, the method allows to determine input/output mapping of complex gene network using noisy transient transfection data.Author summary: One of the key features of a gene circuit is its input/output behavior. A few earlier publications attempted to develop methods to extract this behavior using transient transfection of circuit components in mammalian cells. However, the hitherto developed methods are only suitable for circuit with monomodal output distribution. Moreover, the relationship between the extracted I/O mapping and the "ground truth" that would have obtained with stably-integrated circuits, has not been addressed. Here we explore cell populations easily identifiable in flow cytometry data, namely, the peaks of fluorescent readout distribution in cells binned by the common expression value of the transfection reporter, or marker, gene. Using numerical simulations, we find that the distribution of circuit copy number in these cells deterministically depends on marker fluorescence in the noise-dependent manner. Moreover, we find that this is true also in the case of bi-modal output distribution. Using the peaks of input and output distributions, we are able to reconstruct the I/O mapping of the circuit and relate it to the I/O mapping of the stably-integrated circuit. The reconstruction is enabled by a new computational method we call PFAFF. The method is extensively validated with forward-simulated flow cytometry data from stable and transient transfections, with up to seven different circuits. The results show excellent correlation between the I/O behavior extracted by PFAFF from simulated transient transfection data, and the data simulated for stably integrated circuit.

Suggested Citation

  • Christoph Stelzer & Yaakov Benenson, 2020. "Precise determination of input-output mapping for multimodal gene circuits using data from transient transfection," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-30, November.
  • Handle: RePEc:plo:pcbi00:1008389
    DOI: 10.1371/journal.pcbi.1008389
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008389
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008389&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.