IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004488.html
   My bibliography  Save this article

Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty

Author

Listed:
  • Thembi Mdluli
  • Gregery T Buzzard
  • Ann E Rundell

Abstract

This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements.Author Summary: Many mathematical models that have been developed for biological systems are limited because the complex systems are not well understood, the parameters are not known, and available data is limited and noisy. On the other hand, experiments to support model development are limited in terms of costs and time, feasible inputs and feasible measurements. MBDOE combines the mathematical models with experiment design to strategically design optimal experiments to obtain data that will contribute to the understanding of the systems. Our approach extends current capabilities of existing MBDOE techniques to make them more useful for scientists to resolve the trajectories of the system under study. It identifies the optimal conditions for stimuli and measurements that yield the most information about the system given the practical limitations. Exploration of the input space is not a trivial extension to MBDOE methods used for determining optimal measurements due to the nonlinear nature of many biological system models. The exploration of the system dynamics elicited by different inputs requires a computationally efficient and tractable approach. Our approach plans optimal experiments to reduce dynamical uncertainty in the output of selected target states of the biological system.

Suggested Citation

  • Thembi Mdluli & Gregery T Buzzard & Ann E Rundell, 2015. "Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-23, September.
  • Handle: RePEc:plo:pcbi00:1004488
    DOI: 10.1371/journal.pcbi.1004488
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004488
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004488&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    2. Daniel Silk & Paul D W Kirk & Chris P Barnes & Tina Toni & Michael P H Stumpf, 2014. "Model Selection in Systems Biology Depends on Experimental Design," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.
    3. Johannes Stegmaier & Dominik Skanda & Dirk Lebiedz, 2013. "Robust Optimal Design of Experiments for Model Discrimination Using an Interactive Software Tool," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-17, February.
    4. Juliane Liepe & Sarah Filippi & Michał Komorowski & Michael P H Stumpf, 2013. "Maximizing the Information Content of Experiments in Systems Biology," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-13, January.
    5. Nuno F Lages & Carlos Cordeiro & Marta Sousa Silva & Ana Ponces Freire & António E N Ferreira, 2012. "Optimization of Time-Course Experiments for Kinetic Model Discrimination," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
    6. Joshua F Apgar & Jared E Toettcher & Drew Endy & Forest M White & Bruce Tidor, 2008. "Stimulus Design for Model Selection and Validation in Cell Signaling," PLOS Computational Biology, Public Library of Science, vol. 4(2), pages 1-10, February.
    7. Bernhard Steiert & Andreas Raue & Jens Timmer & Clemens Kreutz, 2012. "Experimental Design for Parameter Estimation of Gene Regulatory Networks," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    2. Juliane Liepe & Sarah Filippi & Michał Komorowski & Michael P H Stumpf, 2013. "Maximizing the Information Content of Experiments in Systems Biology," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-13, January.
    3. Afnizanfaizal Abdullah & Safaai Deris & Sohail Anwar & Satya N V Arjunan, 2013. "An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-16, March.
    4. Filip Melinscak & Dominik R Bach, 2020. "Computational optimization of associative learning experiments," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-23, January.
    5. Federico Sevlever & Juan Pablo Di Bella & Alejandra C Ventura, 2020. "Discriminating between negative cooperativity and ligand binding to independent sites using pre-equilibrium properties of binding curves," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-21, June.
    6. Gabriele Scheler, 2013. "Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-13, February.
    7. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    8. Daniel Silk & Paul D W Kirk & Chris P Barnes & Tina Toni & Michael P H Stumpf, 2014. "Model Selection in Systems Biology Depends on Experimental Design," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.
    9. Katja Rateitschak & Felix Winter & Falko Lange & Robert Jaster & Olaf Wolkenhauer, 2012. "Parameter Identifiability and Sensitivity Analysis Predict Targets for Enhancement of STAT1 Activity in Pancreatic Cancer and Stellate Cells," PLOS Computational Biology, Public Library of Science, vol. 8(12), pages 1-14, December.
    10. Bob Sluijs & Roel J. M. Maas & Ardjan J. Linden & Tom F. A. Greef & Wilhelm T. S. Huck, 2022. "A microfluidic optimal experimental design platform for forward design of cell-free genetic networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Gennady Gorin & John J. Vastola & Meichen Fang & Lior Pachter, 2022. "Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Afnizanfaizal Abdullah & Safaai Deris & Mohd Saberi Mohamad & Sohail Anwar, 2013. "An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    13. Zachary R Fox & Brian Munsky, 2019. "The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-23, January.
    14. Alejandro F Villaverde & Antonio Barreiro & Antonis Papachristodoulou, 2016. "Structural Identifiability of Dynamic Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-22, October.
    15. Katharina Nöh & Sebastian Niedenführ & Martin Beyß & Wolfgang Wiechert, 2018. "A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-30, October.
    16. Filippo Menolascina & Gianfranco Fiore & Emanuele Orabona & Luca De Stefano & Mike Ferry & Jeff Hasty & Mario di Bernardo & Diego di Bernardo, 2014. "In-Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene Networks," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-14, May.
    17. Mark K Transtrum & Peng Qiu, 2016. "Bridging Mechanistic and Phenomenological Models of Complex Biological Systems," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-34, May.
    18. Jeffrey P Perley & Judith Mikolajczak & Marietta L Harrison & Gregery T Buzzard & Ann E Rundell, 2014. "Multiple Model-Informed Open-Loop Control of Uncertain Intracellular Signaling Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-15, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.