Model Selection in Systems Biology Depends on Experimental Design
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1003650
Download full text from publisher
References listed on IDEAS
- Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
- Juliane Liepe & Sarah Filippi & Michał Komorowski & Michael P H Stumpf, 2013. "Maximizing the Information Content of Experiments in Systems Biology," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-13, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Thembi Mdluli & Gregery T Buzzard & Ann E Rundell, 2015. "Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-23, September.
- Gennady Gorin & John J. Vastola & Meichen Fang & Lior Pachter, 2022. "Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Filip Melinscak & Dominik R Bach, 2020. "Computational optimization of associative learning experiments," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-23, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- George Karabatsos, 2023. "Approximate Bayesian computation using asymptotically normal point estimates," Computational Statistics, Springer, vol. 38(2), pages 531-568, June.
- David J Price & Alexandre Breuzé & Richard Dybowski & Piero Mastroeni & Olivier Restif, 2017. "An efficient moments-based inference method for within-host bacterial infection dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-27, November.
- Frederick Callaway & Antonio Rangel & Thomas L Griffiths, 2021. "Fixation patterns in simple choice reflect optimal information sampling," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-29, March.
- Aushev, Alexander & Pesonen, Henri & Heinonen, Markus & Corander, Jukka & Kaski, Samuel, 2022. "Likelihood-free inference with deep Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
- Jonathan U Harrison & Ruth E Baker, 2020. "An automatic adaptive method to combine summary statistics in approximate Bayesian computation," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
- Hazra, Indranil & Pandey, Mahesh D. & Manzana, Noldainerick, 2020. "Approximate Bayesian computation (ABC) method for estimating parameters of the gamma process using noisy data," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
- Dyer, Joel & Cannon, Patrick & Farmer, J. Doyne & Schmon, Sebastian M., 2024. "Black-box Bayesian inference for agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 161(C).
- Chapron, Guillaume & Wikenros, Camilla & Liberg, Olof & Wabakken, Petter & Flagstad, Øystein & Milleret, Cyril & Månsson, Johan & Svensson, Linn & Zimmermann, Barbara & Åkesson, Mikael & Sand, Håkan, 2016. "Estimating wolf (Canis lupus) population size from number of packs and an individual based model," Ecological Modelling, Elsevier, vol. 339(C), pages 33-44.
- Mathias Silva, 2023.
"Parametric estimation of income distributions using grouped data: an Approximate Bayesian Computation approach [Working Papers / Documents de travail],"
Working Papers
hal-04066544, HAL.
- Mathias Silva, 2023. "Parametric estimation of income distributions using grouped data: an Approximate Bayesian Computation approach," AMSE Working Papers 2310, Aix-Marseille School of Economics, France.
- Sifat A Moon & Lee W Cohnstaedt & D Scott McVey & Caterina M Scoglio, 2019. "A spatio-temporal individual-based network framework for West Nile virus in the USA: Spreading pattern of West Nile virus," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
- Tracy L Stepien & Holley E Lynch & Shirley X Yancey & Laura Dempsey & Lance A Davidson, 2019. "Using a continuum model to decipher the mechanics of embryonic tissue spreading from time-lapse image sequences: An approximate Bayesian computation approach," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
- Clark, Matt & Andrews, Jeffrey & Kolarik, Nicholas & Omar, Mbarouk Mussa & Hillis, Vicken, 2024. "Causal attribution of agricultural expansion in a small island system using approximate Bayesian computation," Land Use Policy, Elsevier, vol. 137(C).
- Ye Chen & Ilya O. Ryzhov, 2020. "Technical Note—Consistency Analysis of Sequential Learning Under Approximate Bayesian Inference," Operations Research, INFORMS, vol. 68(1), pages 295-307, January.
- Warne, David J. & Baker, Ruth E. & Simpson, Matthew J., 2018. "Multilevel rejection sampling for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 71-86.
- Katharina Nöh & Sebastian Niedenführ & Martin Beyß & Wolfgang Wiechert, 2018. "A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-30, October.
- Wilkinson Richard David, 2013. "Approximate Bayesian computation (ABC) gives exact results under the assumption of model error," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(2), pages 129-141, May.
- Sebastian Calcetero-Vanegas & Andrei L. Badescu & X. Sheldon Lin, 2022. "Effective experience rating for large insurance portfolios via surrogate modeling," Papers 2211.06568, arXiv.org, revised Jun 2024.
- Ljubisa Miskovic & Jonas Béal & Michael Moret & Vassily Hatzimanikatis, 2019. "Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-29, August.
- Thembi Mdluli & Gregery T Buzzard & Ann E Rundell, 2015. "Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-23, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003650. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.