IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002888.html
   My bibliography  Save this article

Maximizing the Information Content of Experiments in Systems Biology

Author

Listed:
  • Juliane Liepe
  • Sarah Filippi
  • Michał Komorowski
  • Michael P H Stumpf

Abstract

Our understanding of most biological systems is in its infancy. Learning their structure and intricacies is fraught with challenges, and often side-stepped in favour of studying the function of different gene products in isolation from their physiological context. Constructing and inferring global mathematical models from experimental data is, however, central to systems biology. Different experimental setups provide different insights into such systems. Here we show how we can combine concepts from Bayesian inference and information theory in order to identify experiments that maximize the information content of the resulting data. This approach allows us to incorporate preliminary information; it is global and not constrained to some local neighbourhood in parameter space and it readily yields information on parameter robustness and confidence. Here we develop the theoretical framework and apply it to a range of exemplary problems that highlight how we can improve experimental investigations into the structure and dynamics of biological systems and their behavior. Author Summary: For most biological signalling and regulatory systems we still lack reliable mechanistic models. And where such models exist, e.g. in the form of differential equations, we typically have only rough estimates for the parameters that characterize the biochemical reactions. In order to improve our knowledge of such systems we require better estimates for these parameters and here we show how judicious choice of experiments, based on a combination of simulations and information theoretical analysis, can help us. Our approach builds on the available, frequently rudimentary information, and identifies which experimental set-up provides most additional information about all the parameters, or individual parameters. We will also consider the related but subtly different problem of which experiments need to be performed in order to decrease the uncertainty about the behaviour of the system under altered conditions. We develop the theoretical framework in the necessary detail before illustrating its use and applying it to the repressilator model, the regulation of Hes1 and signal transduction in the Akt pathway.

Suggested Citation

  • Juliane Liepe & Sarah Filippi & Michał Komorowski & Michael P H Stumpf, 2013. "Maximizing the Information Content of Experiments in Systems Biology," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-13, January.
  • Handle: RePEc:plo:pcbi00:1002888
    DOI: 10.1371/journal.pcbi.1002888
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002888
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002888&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002888?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    2. Yu Toyoshima & Hiroaki Kakuda & Kazuhiro A. Fujita & Shinsuke Uda & Shinya Kuroda, 2012. "Sensitivity control through attenuation of signal transfer efficiency by negative regulation of cellular signalling," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    3. David G. Spiller & Christopher D. Wood & David A. Rand & Michael R. H. White, 2010. "Measurement of single-cell dynamics," Nature, Nature, vol. 465(7299), pages 736-745, June.
    4. Joshua F Apgar & Jared E Toettcher & Drew Endy & Forest M White & Bruce Tidor, 2008. "Stimulus Design for Model Selection and Validation in Cell Signaling," PLOS Computational Biology, Public Library of Science, vol. 4(2), pages 1-10, February.
    5. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    6. Ryan N Gutenkunst & Joshua J Waterfall & Fergal P Casey & Kevin S Brown & Christopher R Myers & James P Sethna, 2007. "Universally Sloppy Parameter Sensitivities in Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-8, October.
    7. Daniel Silk & Paul D.W. Kirk & Chris P. Barnes & Tina Toni & Anna Rose & Simon Moon & Margaret J. Dallman & Michael P.H. Stumpf, 2011. "Designing attractive models via automated identification of chaotic and oscillatory dynamical regimes," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thembi Mdluli & Gregery T Buzzard & Ann E Rundell, 2015. "Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-23, September.
    2. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    3. Katharina Nöh & Sebastian Niedenführ & Martin Beyß & Wolfgang Wiechert, 2018. "A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-30, October.
    4. Filip Melinscak & Dominik R Bach, 2020. "Computational optimization of associative learning experiments," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-23, January.
    5. Daniel Silk & Paul D W Kirk & Chris P Barnes & Tina Toni & Michael P H Stumpf, 2014. "Model Selection in Systems Biology Depends on Experimental Design," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippi Sarah & Barnes Chris P. & Cornebise Julien & Stumpf Michael P.H., 2013. "On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 87-107, March.
    2. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    3. Gabriele Lillacci & Mustafa Khammash, 2010. "Parameter Estimation and Model Selection in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
    4. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    5. Thembi Mdluli & Gregery T Buzzard & Ann E Rundell, 2015. "Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-23, September.
    6. Afnizanfaizal Abdullah & Safaai Deris & Sohail Anwar & Satya N V Arjunan, 2013. "An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-16, March.
    7. Mark K Transtrum & Peng Qiu, 2016. "Bridging Mechanistic and Phenomenological Models of Complex Biological Systems," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-34, May.
    8. Federico Sevlever & Juan Pablo Di Bella & Alejandra C Ventura, 2020. "Discriminating between negative cooperativity and ligand binding to independent sites using pre-equilibrium properties of binding curves," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-21, June.
    9. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    10. Gabriele Scheler, 2013. "Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-13, February.
    11. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    12. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.
    14. Margherita Carletti & Malay Banerjee, 2019. "A Backward Technique for Demographic Noise in Biological Ordinary Differential Equation Models," Mathematics, MDPI, vol. 7(12), pages 1-16, December.
    15. Adel Dayarian & Madalena Chaves & Eduardo D Sontag & Anirvan M Sengupta, 2009. "Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    16. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    17. Amrita X Sarkar & Eric A Sobie, 2010. "Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.
    18. Hongwei Shao & Tao Peng & Zhiwei Ji & Jing Su & Xiaobo Zhou, 2013. "Systematically Studying Kinase Inhibitor Induced Signaling Network Signatures by Integrating Both Therapeutic and Side Effects," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-16, December.
    19. Konstantinos I Papadimitriou & Guy-Bart V Stan & Emmanuel M Drakakis, 2013. "Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-24, February.
    20. Inés P Mariño & Alexey Zaikin & Joaquín Míguez, 2017. "A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-25, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.