IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0055723.html
   My bibliography  Save this article

Robust Optimal Design of Experiments for Model Discrimination Using an Interactive Software Tool

Author

Listed:
  • Johannes Stegmaier
  • Dominik Skanda
  • Dirk Lebiedz

Abstract

Mathematical modeling of biochemical processes significantly contributes to a better understanding of biological functionality and underlying dynamic mechanisms. To support time consuming and costly lab experiments, kinetic reaction equations can be formulated as a set of ordinary differential equations, which in turn allows to simulate and compare hypothetical models in silico. To identify new experimental designs that are able to discriminate between investigated models, the approach used in this work solves a semi-infinite constrained nonlinear optimization problem using derivative based numerical algorithms. The method takes into account parameter variabilities such that new experimental designs are robust against parameter changes while maintaining the optimal potential to discriminate between hypothetical models. In this contribution we present a newly developed software tool that offers a convenient graphical user interface for model discrimination. We demonstrate the beneficial operation of the discrimination approach and the usefulness of the software tool by analyzing a realistic benchmark experiment from literature. New robust optimal designs that allow to discriminate between the investigated model hypotheses of the benchmark experiment are successfully calculated and yield promising results. The involved robustification approach provides maximally discriminating experiments for the worst parameter configurations, which can be used to estimate the meaningfulness of upcoming experiments. A major benefit of the graphical user interface is the ability to interactively investigate the model behavior and the clear arrangement of numerous variables. In addition to a brief theoretical overview of the discrimination method and the functionality of the software tool, the importance of robustness of experimental designs against parameter variability is demonstrated on a biochemical benchmark problem. The software is licensed under the GNU General Public License and freely available at http://sourceforge.net/projects/mdtgui/.

Suggested Citation

  • Johannes Stegmaier & Dominik Skanda & Dirk Lebiedz, 2013. "Robust Optimal Design of Experiments for Model Discrimination Using an Interactive Software Tool," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-17, February.
  • Handle: RePEc:plo:pone00:0055723
    DOI: 10.1371/journal.pone.0055723
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055723
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0055723&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0055723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thembi Mdluli & Gregery T Buzzard & Ann E Rundell, 2015. "Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-23, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0055723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.