IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003883.html
   My bibliography  Save this article

Stochastic Modeling of Mouse Motor Activity under Deep Brain Stimulation: The Extraction of Arousal Information

Author

Listed:
  • Daniel M Keenan
  • Amy W Quinkert
  • Donald W Pfaff

Abstract

In the present paper, we quantify, with a rigorous approach, the nature of motor activity in response to Deep Brain Stimulation (DBS), in the mouse. DBS is currently being used in the treatment of a broad range of diseases, but its underlying principles are still unclear. Because mouse movement involves rapidly repeated starting and stopping, one must statistically verify that the movement at a given stimulation time was not just coincidental, endogenously-driven movement. Moreover, the amount of activity changes significantly over the circadian rhythm, and hence the means, variances and autocorrelations are all time varying. A new methodology is presented. For example, to discern what is and what is not impacted by stimulation, velocity is classified (in a time-evolving manner) as being zero-, one- and two-dimensional movement. The most important conclusions of the paper are: (1) (DBS) stimulation is proven to be truly effective; (2) it is two-dimensional (2-D) movement that strongly differs between light and dark and responds to stimulation; and, (3) stimulation in the light initiates a manner of movement, 2-D movement, that is more commonly seen in the (non-stimulated) dark. Based upon these conclusions, it is conjectured that the above patterns of 2-D movement could be a straightforward, easy to calculate correlate of arousal. The above conclusions will aid in the systematic evaluation and understanding of how DBS in CNS arousal pathways leads to the activation of behavior.Author Summary: Brainstem and thalamic regulation of arousal has been studied experimentally since the mid 20-th century. Today, Deep Brain Stimulation (DBS) is used in the treatment of movement disorders, chronic pain, clinical depression, amongst others. At present, the proper choice of DBS parameters (frequency and strength of the electric stimulation), and how those parameters should be modified as conditions change, are not well understood. In this work, using motor activity as the observed response, a statistical framework is developed for such study, and a quantitative relationship between parameter values and response is established. Within this framework, a possible correlate of arousal, the rapid onset of spatial (two-dimensional) movement, is uncovered and also studied. One long-term hope for techniques such as DBS are that they could assist in the treatment of disorders of consciousness, by supplementing or replacing (e.g., in Traumatic Brain Injury) what should ordinarily be the appropriate endogenous stimulation.

Suggested Citation

  • Daniel M Keenan & Amy W Quinkert & Donald W Pfaff, 2015. "Stochastic Modeling of Mouse Motor Activity under Deep Brain Stimulation: The Extraction of Arousal Information," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-24, February.
  • Handle: RePEc:plo:pcbi00:1003883
    DOI: 10.1371/journal.pcbi.1003883
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003883
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003883&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Diggle & Nicholas I. Fisher, 1991. "Nonparametric Comparison of Cumulative Periodograms," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(3), pages 423-434, November.
    2. Ombao H. C & Raz J. A & von Sachs R. & Malow B. A, 2001. "Automatic Statistical Analysis of Bivariate Nonstationary Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 543-560, June.
    3. N. D. Schiff & J. T. Giacino & K. Kalmar & J. D. Victor & K. Baker & M. Gerber & B. Fritz & B. Eisenberg & J. O’Connor & E. J. Kobylarz & S. Farris & A. Machado & C. McCagg & F. Plum & J. J. Fins & A., 2007. "Behavioural improvements with thalamic stimulation after severe traumatic brain injury," Nature, Nature, vol. 448(7153), pages 600-603, August.
    4. N. D. Schiff & J. T. Giacino & K. Kalmar & J. D. Victor & K. Baker & M. Gerber & B. Fritz & B. Eisenberg & T. Biondi & J. O’Connor & E. J. Kobylarz & S. Farris & A. Machado & C. McCagg & F. Plum & J. , 2008. "Erratum: Behavioural improvements with thalamic stimulation after severe traumatic brain injury," Nature, Nature, vol. 452(7183), pages 120-120, March.
    5. Hsiao-Yun Huang & Hernando Ombao & David S. Stoffer, 2004. "Discrimination and Classification of Nonstationary Time Series Using the SLEX Model," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 763-774, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
    2. Andrés Alonso & David Casado & Sara López-Pintado & Juan Romo, 2014. "Robust Functional Supervised Classification for Time Series," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 325-350, October.
    3. Last, Michael & Shumway, Robert, 2008. "Detecting abrupt changes in a piecewise locally stationary time series," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 191-214, February.
    4. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent classification of non-stationary time series using stochastic wavelet representations," LSE Research Online Documents on Economics 25162, London School of Economics and Political Science, LSE Library.
    5. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Casado, David & López Pintado, Sara, 2008. "A functional data based method for time series classification," DES - Working Papers. Statistics and Econometrics. WS ws087427, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Jane L. Harvill & Priya Kohli & Nalini Ravishanker, 2017. "Clustering Nonlinear, Nonstationary Time Series Using BSLEX," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 935-955, September.
    8. Olsen, Lena Ringstad & Chaudhuri, Probal & Godtliebsen, Fred, 2008. "Multiscale spectral analysis for detecting short and long range change points in time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3310-3330, March.
    9. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    10. Guttentag, Daniel A., 2010. "Virtual reality: Applications and implications for tourism," Tourism Management, Elsevier, vol. 31(5), pages 637-651.
    11. Siem Jan Koopman & Soon Yip Wong, 2006. "Extracting Business Cycles using Semi-parametric Time-varying Spectra with Applications to US Macroeconomic Time Series," Tinbergen Institute Discussion Papers 06-105/4, Tinbergen Institute.
    12. Shibin Zhang & Xin M. Tu, 2022. "Tests for comparing time‐invariant and time‐varying spectra based on the Anderson–Darling statistic," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(3), pages 254-282, August.
    13. Shibin Zhang, 2022. "Automatic estimation of spatial spectra via smoothing splines," Computational Statistics, Springer, vol. 37(2), pages 565-590, April.
    14. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
    15. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    16. Daniel Cirkovic & Thomas J. Fisher, 2021. "On testing for the equality of autocovariance in time series," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
    17. Fontaine, Charles & Frostig, Ron D. & Ombao, Hernando, 2020. "Modeling non-linear spectral domain dependence using copulas with applications to rat local field potentials," Econometrics and Statistics, Elsevier, vol. 15(C), pages 85-103.
    18. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    20. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.