IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003301.html
   My bibliography  Save this article

A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks

Author

Listed:
  • Evan S Schaffer
  • Srdjan Ostojic
  • L F Abbott

Abstract

Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons.Author Summary: Neuronal responses are often characterized by the rate at which action potentials are generated rather than by the timing of individual spikes. Firing-rate descriptions of neural activity are appealing because of their comparative simplicity, but it is important to develop models that faithfully approximate dynamic features arising from spiking. In particular, synchronization or partial synchronization of spikes is an important feature that cannot be described by typical firing-rate models. Here we develop a model that is nearly as simple as the simplest firing-rate models and yet can account for a number of aspects of spiking dynamics, including partial synchrony. The model matches the dynamic activity of networks of spiking neurons with surprising accuracy. By expanding the range of dynamic phenomena that can be described by simple firing-rate equations, this model should be useful in guiding intuition about and understanding of neural circuit function.

Suggested Citation

  • Evan S Schaffer & Srdjan Ostojic & L F Abbott, 2013. "A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-11, October.
  • Handle: RePEc:plo:pcbi00:1003301
    DOI: 10.1371/journal.pcbi.1003301
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003301
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003301&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael London & Arnd Roth & Lisa Beeren & Michael Häusser & Peter E. Latham, 2010. "Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex," Nature, Nature, vol. 466(7302), pages 123-127, July.
    2. Srdjan Ostojic & Nicolas Brunel, 2011. "From Spiking Neuron Models to Linear-Nonlinear Models," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel B. Benigno & Roberto C. Budzinski & Zachary W. Davis & John H. Reynolds & Lyle Muller, 2023. "Waves traveling over a map of visual space can ignite short-term predictions of sensory input," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omri Harish & David Hansel, 2015. "Asynchronous Rate Chaos in Spiking Neuronal Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-38, July.
    2. Yuxin Zhang & Yifei Yang & Xiaosi Li & Zijing Yuan & Yuki Todo & Haichuan Yang, 2023. "A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, March.
    3. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    4. Pengcheng Zhou & Shawn D Burton & Adam C Snyder & Matthew A Smith & Nathaniel N Urban & Robert E Kass, 2015. "Establishing a Statistical Link between Network Oscillations and Neural Synchrony," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-25, October.
    5. Richard Naud & Wulfram Gerstner, 2012. "Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-14, October.
    6. Ravi Pancholi & Lauren Ryan & Simon Peron, 2023. "Learning in a sensory cortical microstimulation task is associated with elevated representational stability," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Emiliano Torre & Carlos Canova & Michael Denker & George Gerstein & Moritz Helias & Sonja Grün, 2016. "ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-34, July.
    8. Volker Pernice & Benjamin Staude & Stefano Cardanobile & Stefan Rotter, 2011. "How Structure Determines Correlations in Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    9. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    10. Vladimir Ilin & Ian H Stevenson & Maxim Volgushev, 2014. "Injection of Fully-Defined Signal Mixtures: A Novel High-Throughput Tool to Study Neuronal Encoding and Computations," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-10, October.
    11. Matthias Schultze-Kraft & Markus Diesmann & Sonja Grün & Moritz Helias, 2013. "Noise Suppression and Surplus Synchrony by Coincidence Detection," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-15, April.
    12. Skander Mensi & Olivier Hagens & Wulfram Gerstner & Christian Pozzorini, 2016. "Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-38, February.
    13. Angulo-Garcia, David & Torcini, Alessandro, 2014. "Stable chaos in fluctuation driven neural circuits," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 233-245.
    14. Michelle F Craft & Andrea K Barreiro & Shree Hari Gautam & Woodrow L Shew & Cheng Ly, 2021. "Differences in olfactory bulb mitral cell spiking with ortho- and retronasal stimulation revealed by data-driven models," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    15. James Trousdale & Yu Hu & Eric Shea-Brown & Krešimir Josić, 2012. "Impact of Network Structure and Cellular Response on Spike Time Correlations," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    16. Julian Rossbroich & Daniel Trotter & John Beninger & Katalin Tóth & Richard Naud, 2021. "Linear-nonlinear cascades capture synaptic dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-27, March.
    17. Yasuhiro Tsubo & Yoshikazu Isomura & Tomoki Fukai, 2012. "Power-Law Inter-Spike Interval Distributions Infer a Conditional Maximization of Entropy in Cortical Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-11, April.
    18. Victor J Barranca & Gregor Kovačič & Douglas Zhou & David Cai, 2014. "Sparsity and Compressed Coding in Sensory Systems," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-11, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.