IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004499.html
   My bibliography  Save this article

The Elementary Operations of Human Vision Are Not Reducible to Template-Matching

Author

Listed:
  • Peter Neri

Abstract

It is generally acknowledged that biological vision presents nonlinear characteristics, yet linear filtering accounts of visual processing are ubiquitous. The template-matching operation implemented by the linear-nonlinear cascade (linear filter followed by static nonlinearity) is the most widely adopted computational tool in systems neuroscience. This simple model achieves remarkable explanatory power while retaining analytical tractability, potentially extending its reach to a wide range of systems and levels in sensory processing. The extent of its applicability to human behaviour, however, remains unclear. Because sensory stimuli possess multiple attributes (e.g. position, orientation, size), the issue of applicability may be asked by considering each attribute one at a time in relation to a family of linear-nonlinear models, or by considering all attributes collectively in relation to a specified implementation of the linear-nonlinear cascade. We demonstrate that human visual processing can operate under conditions that are indistinguishable from linear-nonlinear transduction with respect to substantially different stimulus attributes of a uniquely specified target signal with associated behavioural task. However, no specific implementation of a linear-nonlinear cascade is able to account for the entire collection of results across attributes; a satisfactory account at this level requires the introduction of a small gain-control circuit, resulting in a model that no longer belongs to the linear-nonlinear family. Our results inform and constrain efforts at obtaining and interpreting comprehensive characterizations of the human sensory process by demonstrating its inescapably nonlinear nature, even under conditions that have been painstakingly fine-tuned to facilitate template-matching behaviour and to produce results that, at some level of inspection, do conform to linear filtering predictions. They also suggest that compliance with linear transduction may be the targeted outcome of carefully crafted nonlinear circuits, rather than default behaviour exhibited by basic components.Author Summary: Any attempt to model human vision must first ask: can it be approximated by a process that linearly matches the visual stimulus with an internal template? We often take this approximation for granted without properly checking its validity. Even if we assume that the approximation is valid under specific conditions, does this mean the system operates template matching across the board? We would not know exactly in what sense and to what extent the approximation may be viable. Our results address both issues. We find that template matchers are locally applicable in relation to a wide range of conditions, providing much-needed justification for several relevant computational tools. We also find, however, that there is no sense in which the system is globally a linear template: it remains inescapably nonlinear. Our findings suggest that linear transduction is not cost-free: it is not a default building block that is used for constructing expensive nonlinear processes. Rather, linear sensory representations arise from carefully constructed nonlinear processes that strike a balanced act between the necessity to retain other important computations, and the desirability of transducing and representing the visual world on a linear scale.

Suggested Citation

  • Peter Neri, 2015. "The Elementary Operations of Human Vision Are Not Reducible to Template-Matching," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-27, November.
  • Handle: RePEc:plo:pcbi00:1004499
    DOI: 10.1371/journal.pcbi.1004499
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004499
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004499&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.