IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0044910.html
   My bibliography  Save this article

Saccadic Reaction Times to Audiovisual Stimuli Show Effects of Oscillatory Phase Reset

Author

Listed:
  • Adele Diederich
  • Annette Schomburg
  • Hans Colonius

Abstract

Initiating an eye movement towards a suddenly appearing visual target is faster when an accessory auditory stimulus occurs in close spatiotemporal vicinity. Such facilitation of saccadic reaction time (SRT) is well-documented, but the exact neural mechanisms underlying the crossmodal effect remain to be elucidated. From EEG/MEG studies it has been hypothesized that coupled oscillatory activity in primary sensory cortices regulates multisensory processing. Specifically, it is assumed that the phase of an ongoing neural oscillation is shifted due to the occurrence of a sensory stimulus so that, across trials, phase values become highly consistent (phase reset). If one can identify the phase an oscillation is reset to, it is possible to predict when temporal windows of high and low excitability will occur. However, in behavioral experiments the pre-stimulus phase will be different on successive repetitions of the experimental trial, and average performance over many trials will show no signs of the modulation. Here we circumvent this problem by repeatedly presenting an auditory accessory stimulus followed by a visual target stimulus with a temporal delay varied in steps of 2 ms. Performing a discrete time series analysis on SRT as a function of the delay, we provide statistical evidence for the existence of distinct peak spectral components in the power spectrum. These frequencies, although varying across participants, fall within the beta and gamma range (20 to 40 Hz) of neural oscillatory activity observed in neurophysiological studies of multisensory integration. Some evidence for high-theta/alpha activity was found as well. Our results are consistent with the phase reset hypothesis and demonstrate that it is amenable to testing by purely psychophysical methods. Thus, any theory of multisensory processes that connects specific brain states with patterns of saccadic responses should be able to account for traces of oscillatory activity in observable behavior.

Suggested Citation

  • Adele Diederich & Annette Schomburg & Hans Colonius, 2012. "Saccadic Reaction Times to Audiovisual Stimuli Show Effects of Oscillatory Phase Reset," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
  • Handle: RePEc:plo:pone00:0044910
    DOI: 10.1371/journal.pone.0044910
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044910
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0044910&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0044910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thilo Womelsdorf & Pascal Fries & Partha P. Mitra & Robert Desimone, 2006. "Gamma-band synchronization in visual cortex predicts speed of change detection," Nature, Nature, vol. 439(7077), pages 733-736, February.
    2. P. N. Steinmetz & A. Roy & P. J. Fitzgerald & S. S. Hsiao & K. O. Johnson & E. Niebur, 2000. "Attention modulates synchronized neuronal firing in primate somatosensory cortex," Nature, Nature, vol. 404(6774), pages 187-190, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Hongtao & van Leeuwen, C., 2006. "Synchronization of chaotic neural networks via output or state coupling," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 166-176.
    2. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    4. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    5. Biyu J He & John M Zempel, 2013. "Average Is Optimal: An Inverted-U Relationship between Trial-to-Trial Brain Activity and Behavioral Performance," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    6. Qin, Ying-Mei & Che, Yan-Qiu & Zhao, Jia, 2018. "Effects of degree distributions on signal propagation in noisy feedforward neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 763-774.
    7. Helen Abadzi, 2006. "Efficient Learning for the Poor : Insights from the Frontier of Cognitive Neuroscience," World Bank Publications - Books, The World Bank Group, number 7023.
    8. Polynikis, A. & di Bernardo, M. & Hogan, S.J., 2009. "Synchronizability of coupled PWL maps," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1353-1367.
    9. Lu, Jun Guo & Chen, Guanrong, 2009. "Global asymptotical synchronization of chaotic neural networks by output feedback impulsive control: An LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2293-2300.
    10. Seyed-Ali Sadegh-Zadeh & Chandrasekhar Kambhampati & Darryl N. Davis, 2019. "Ionic Imbalances and Coupling in Synchronization of Responses in Neurons," J, MDPI, vol. 2(1), pages 1-24, January.
    11. Zhou, Jin & Chen, Tianping & Xiang, Lan, 2006. "Robust synchronization of delayed neural networks based on adaptive control and parameters identification," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 905-913.
    12. Georgios Spyropoulos & Matteo Saponati & Jarrod Robert Dowdall & Marieke Louise Schölvinck & Conrado Arturo Bosman & Bruss Lima & Alina Peter & Irene Onorato & Johanna Klon-Lipok & Rasmus Roese & Serg, 2022. "Spontaneous variability in gamma dynamics described by a damped harmonic oscillator driven by noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Christian Donner & Klaus Obermayer & Hideaki Shimazaki, 2017. "Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-27, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0044910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.