IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002682.html
   My bibliography  Save this article

Binding of Two Intrinsically Disordered Peptides to a Multi-Specific Protein: A Combined Monte Carlo and Molecular Dynamics Study

Author

Listed:
  • Iskra Staneva
  • Yongqi Huang
  • Zhirong Liu
  • Stefan Wallin

Abstract

The unique ability of intrinsically disordered proteins (IDPs) to fold upon binding to partner molecules makes them functionally well-suited for cellular communication networks. For example, the folding-binding of different IDP sequences onto the same surface of an ordered protein provides a mechanism for signaling in a many-to-one manner. Here, we study the molecular details of this signaling mechanism by applying both Molecular Dynamics and Monte Carlo methods to S100B, a calcium-modulated homodimeric protein, and two of its IDP targets, p53 and TRTK-12. Despite adopting somewhat different conformations in complex with S100B and showing no apparent sequence similarity, the two IDP targets associate in virtually the same manner. As free chains, both target sequences remain flexible and sample their respective bound, natively -helical states to a small extent. Association occurs through an intermediate state in the periphery of the S100B binding pocket, stabilized by nonnative interactions which are either hydrophobic or electrostatic in nature. Our results highlight the importance of overall physical properties of IDP segments, such as net charge or presence of strongly hydrophobic amino acids, for molecular recognition via coupled folding-binding. Author Summary: A substantial fraction of our proteins are believed to be partly or completely disordered, meaning that they contain regions that lack a stable folded structure under typical physiological conditions. This is a feature which plays a key role in their functions. For example, it allows them to have many structurally different binding partners which in turn permits the construction of the intricate signaling and regulatory networks necessary to sustain complex biological organisms such as ourselves. Whereas measuring the binding strengths of associations involving disordered proteins is routine, the binding process itself is today still not fully understood. We use two different computational models to study the interactions of a folded protein, S100B, which can bind various disordered peptides. In particular, we compare two peptides whose structures are known when in complex with S100B. Our results suggest that, although the peptides assume different structures in the bound state, there are similarities in how they associate with S100B. The possibility to computationally model the interplay between proteins is an important complement to experiments, by identifying crucial steps in the binding process. This is essential to understand, e.g., how single mutations sometimes lead to serious diseases.

Suggested Citation

  • Iskra Staneva & Yongqi Huang & Zhirong Liu & Stefan Wallin, 2012. "Binding of Two Intrinsically Disordered Peptides to a Multi-Specific Protein: A Combined Monte Carlo and Molecular Dynamics Study," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-9, September.
  • Handle: RePEc:plo:pcbi00:1002682
    DOI: 10.1371/journal.pcbi.1002682
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002682
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002682&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Iskra Staneva & Stefan Wallin, 2011. "Binding Free Energy Landscape of Domain-Peptide Interactions," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-9, August.
    2. Evangelia Petsalaki & Alexander Stark & Eduardo García-Urdiales & Robert B Russell, 2009. "Accurate Prediction of Peptide Binding Sites on Protein Surfaces," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-10, March.
    3. Kenji Sugase & H. Jane Dyson & Peter E. Wright, 2007. "Mechanism of coupled folding and binding of an intrinsically disordered protein," Nature, Nature, vol. 447(7147), pages 1021-1025, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnab Bhattacherjee & Stefan Wallin, 2013. "Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-10, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnab Bhattacherjee & Stefan Wallin, 2013. "Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-10, October.
    2. Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.
    3. Wenzhe Liu & Limin Chen & Dongbao Yin & Zhiheng Yang & Jianfei Feng & Qi Sun & Luhua Lai & Xuefeng Guo, 2023. "Visualizing single-molecule conformational transition and binding dynamics of intrinsically disordered proteins," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Avner Schlessinger & Marco Punta & Guy Yachdav & Laszlo Kajan & Burkhard Rost, 2009. "Improved Disorder Prediction by Combination of Orthogonal Approaches," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-10, February.
    5. Michael Knott & Robert B Best, 2012. "A Preformed Binding Interface in the Unbound Ensemble of an Intrinsically Disordered Protein: Evidence from Molecular Simulations," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-10, July.
    6. Iskra Staneva & Stefan Wallin, 2011. "Binding Free Energy Landscape of Domain-Peptide Interactions," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-9, August.
    7. Kalyan S. Chakrabarti & Simon Olsson & Supriya Pratihar & Karin Giller & Kerstin Overkamp & Ko On Lee & Vytautas Gapsys & Kyoung-Seok Ryu & Bert L. Groot & Frank Noé & Stefan Becker & Donghan Lee & Th, 2022. "A litmus test for classifying recognition mechanisms of transiently binding proteins," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Mahdi Sarmady & William Dampier & Aydin Tozeren, 2011. "Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-11, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.