IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000335.html
   My bibliography  Save this article

Accurate Prediction of Peptide Binding Sites on Protein Surfaces

Author

Listed:
  • Evangelia Petsalaki
  • Alexander Stark
  • Eduardo García-Urdiales
  • Robert B Russell

Abstract

Many important protein–protein interactions are mediated by the binding of a short peptide stretch in one protein to a large globular segment in another. Recent efforts have provided hundreds of examples of new peptides binding to proteins for which a three-dimensional structure is available (either known experimentally or readily modeled) but where no structure of the protein–peptide complex is known. To address this gap, we present an approach that can accurately predict peptide binding sites on protein surfaces. For peptides known to bind a particular protein, the method predicts binding sites with great accuracy, and the specificity of the approach means that it can also be used to predict whether or not a putative or predicted peptide partner will bind. We used known protein–peptide complexes to derive preferences, in the form of spatial position specific scoring matrices, which describe the binding-site environment in globular proteins for each type of amino acid in bound peptides. We then scan the surface of a putative binding protein for sites for each of the amino acids present in a peptide partner and search for combinations of high-scoring amino acid sites that satisfy constraints deduced from the peptide sequence. The method performed well in a benchmark and largely agreed with experimental data mapping binding sites for several recently discovered interactions mediated by peptides, including RG-rich proteins with SMN domains, Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with Argonaute PIWI domain. The method, and associated statistics, is an excellent tool for predicting and studying binding sites for newly discovered peptides mediating critical events in biology.Author Summary: An important class of protein interactions in critical cellular processes, such as signaling pathways, involves a domain from one protein binding to a linear peptide stretch of another. Many methods identify peptides mediating such interactions but without details of how the interactions occur, even when excellent structural information is available for the unbound protein. Experimental studies are currently time consuming, while existing computational methods to predict protein–peptide structures mostly focus on interactions involving specific protein families. Here, we present a general approach for predicting protein–peptide interaction sites. We show that spatial atomic position specific scoring matrices of binding sites for each peptide residue can capture the properties important for binding and when used to scan the surface of target proteins can accurately identify candidate binding sites for interacting peptides. The resulting predictions are highly illuminating for several recently described protein–peptide complexes, including RG-rich peptides with SMN domains, the Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with the Argonaute PIWI domain. The accurate prediction of protein–peptide binding without prior structural knowledge will ultimately enable better functional characterization of many protein interactions involved in vital biological processes and provide a better picture of cellular mechanisms.

Suggested Citation

  • Evangelia Petsalaki & Alexander Stark & Eduardo García-Urdiales & Robert B Russell, 2009. "Accurate Prediction of Peptide Binding Sites on Protein Surfaces," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-10, March.
  • Handle: RePEc:plo:pcbi00:1000335
    DOI: 10.1371/journal.pcbi.1000335
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000335
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000335&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ja-Eun Kim & Junjie Chen & Zhenkun Lou, 2008. "DBC1 is a negative regulator of SIRT1," Nature, Nature, vol. 451(7178), pages 583-586, January.
    2. Doron Betel & Kevin E Breitkreuz & Ruth Isserlin & Danielle Dewar-Darch & Mike Tyers & Christopher W V Hogue, 2007. "Structure-Templated Predictions of Novel Protein Interactions from Sequence Information," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-7, September.
    3. Richard J Edwards & Norman E Davey & Denis C Shields, 2007. "SLiMFinder: A Probabilistic Method for Identifying Over-Represented, Convergently Evolved, Short Linear Motifs in Proteins," PLOS ONE, Public Library of Science, vol. 2(10), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iskra Staneva & Yongqi Huang & Zhirong Liu & Stefan Wallin, 2012. "Binding of Two Intrinsically Disordered Peptides to a Multi-Specific Protein: A Combined Monte Carlo and Molecular Dynamics Study," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-9, September.
    2. Mahdi Sarmady & William Dampier & Aydin Tozeren, 2011. "Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-11, June.
    3. Iskra Staneva & Stefan Wallin, 2011. "Binding Free Energy Landscape of Domain-Peptide Interactions," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-9, August.
    4. Arnab Bhattacherjee & Stefan Wallin, 2013. "Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-10, October.
    5. Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hieu Dinh & Sanguthevar Rajasekaran, 2013. "PMS: A Panoptic Motif Search Tool," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-7, December.
    2. Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.
    3. Mahdi Sarmady & William Dampier & Aydin Tozeren, 2011. "Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-11, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.