IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31374-5.html
   My bibliography  Save this article

A litmus test for classifying recognition mechanisms of transiently binding proteins

Author

Listed:
  • Kalyan S. Chakrabarti

    (Krea University
    Max Planck Institute for Multidisciplinary Sciences)

  • Simon Olsson

    (Chalmers University of Technology
    Freie Universität Berlin)

  • Supriya Pratihar

    (Max Planck Institute for Multidisciplinary Sciences)

  • Karin Giller

    (Max Planck Institute for Multidisciplinary Sciences)

  • Kerstin Overkamp

    (Max Planck Institute for Multidisciplinary Sciences)

  • Ko On Lee

    (Korea Basic Science Institute, Korea Basic Science Institute, Ochang-Eup)

  • Vytautas Gapsys

    (Max Planck Institute for Multidisciplinary Sciences)

  • Kyoung-Seok Ryu

    (Korea Basic Science Institute, Korea Basic Science Institute, Ochang-Eup)

  • Bert L. Groot

    (Max Planck Institute for Multidisciplinary Sciences)

  • Frank Noé

    (Freie Universität Berlin
    Freie Universität Berlin
    Rice University)

  • Stefan Becker

    (Max Planck Institute for Multidisciplinary Sciences)

  • Donghan Lee

    (University of Louisville)

  • Thomas R. Weikl

    (Max Planck Institute of Colloids and Interfaces)

  • Christian Griesinger

    (Max Planck Institute for Multidisciplinary Sciences)

Abstract

Partner recognition in protein binding is critical for all biological functions, and yet, delineating its mechanism is challenging, especially when recognition happens within microseconds. We present a theoretical and experimental framework based on straight-forward nuclear magnetic resonance relaxation dispersion measurements to investigate protein binding mechanisms on sub-millisecond timescales, which are beyond the reach of standard rapid-mixing experiments. This framework predicts that conformational selection prevails on ubiquitin’s paradigmatic interaction with an SH3 (Src-homology 3) domain. By contrast, the SH3 domain recognizes ubiquitin in a two-state binding process. Subsequent molecular dynamics simulations and Markov state modeling reveal that the ubiquitin conformation selected for binding exhibits a characteristically extended C-terminus. Our framework is robust and expandable for implementation in other binding scenarios with the potential to show that conformational selection might be the design principle of the hubs in protein interaction networks.

Suggested Citation

  • Kalyan S. Chakrabarti & Simon Olsson & Supriya Pratihar & Karin Giller & Kerstin Overkamp & Ko On Lee & Vytautas Gapsys & Kyoung-Seok Ryu & Bert L. Groot & Frank Noé & Stefan Becker & Donghan Lee & Th, 2022. "A litmus test for classifying recognition mechanisms of transiently binding proteins," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31374-5
    DOI: 10.1038/s41467-022-31374-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31374-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31374-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher D. Snow & Houbi Nguyen & Vijay S. Pande & Martin Gruebele, 2002. "Absolute comparison of simulated and experimental protein-folding dynamics," Nature, Nature, vol. 420(6911), pages 102-106, November.
    2. Fabian Paul & Christoph Wehmeyer & Esam T. Abualrous & Hao Wu & Michael D. Crabtree & Johannes Schöneberg & Jane Clarke & Christian Freund & Thomas R. Weikl & Frank Noé, 2017. "Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Susanna Röblitz & Marcus Weber, 2013. "Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(2), pages 147-179, June.
    4. Nuria Plattner & Frank Noé, 2015. "Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    5. Fabian Paul & Thomas R Weikl, 2016. "How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-17, September.
    6. Katherine Henzler-Wildman & Dorothee Kern, 2007. "Dynamic personalities of proteins," Nature, Nature, vol. 450(7172), pages 964-972, December.
    7. Peter Eastman & Jason Swails & John D Chodera & Robert T McGibbon & Yutong Zhao & Kyle A Beauchamp & Lee-Ping Wang & Andrew C Simmonett & Matthew P Harrigan & Chaya D Stern & Rafal P Wiewiora & Bernar, 2017. "OpenMM 7: Rapid development of high performance algorithms for molecular dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-17, July.
    8. Kenji Sugase & H. Jane Dyson & Peter E. Wright, 2007. "Mechanism of coupled folding and binding of an intrinsically disordered protein," Nature, Nature, vol. 447(7147), pages 1021-1025, June.
    9. John B. Stiller & Renee Otten & Daniel Häussinger & Pascal S. Rieder & Douglas L. Theobald & Dorothee Kern, 2022. "Structure determination of high-energy states in a dynamic protein ensemble," Nature, Nature, vol. 603(7901), pages 528-535, March.
    10. Guillaume Bouvignies & Pramodh Vallurupalli & D. Flemming Hansen & Bruno E. Correia & Oliver Lange & Alaji Bah & Robert M. Vernon & Frederick W. Dahlquist & David Baker & Lewis E. Kay, 2011. "Solution structure of a minor and transiently formed state of a T4 lysozyme mutant," Nature, Nature, vol. 477(7362), pages 111-114, September.
    11. Shuo Gu & Daniel-Adriano Silva & Luming Meng & Alexander Yue & Xuhui Huang, 2014. "Quantitatively Characterizing the Ligand Binding Mechanisms of Choline Binding Protein Using Markov State Model Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ritaban Halder & Daniel A. Nissley & Ian Sitarik & Yang Jiang & Yiyun Rao & Quyen V. Vu & Mai Suan Li & Justin Pritchard & Edward P. O’Brien, 2023. "How soluble misfolded proteins bypass chaperones at the molecular level," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Polydefkis Diamantis & Oliver T Unke & Markus Meuwly, 2017. "Migration of small ligands in globins: Xe diffusion in truncated hemoglobin N," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-22, March.
    3. Alistair Bailey & Andy van Hateren & Tim Elliott & Jörn M Werner, 2014. "Two Polymorphisms Facilitate Differences in Plasticity between Two Chicken Major Histocompatibility Complex Class I Proteins," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    4. Andreas Mardt & Tim Hempel & Cecilia Clementi & Frank Noé, 2022. "Deep learning to decompose macromolecules into independent Markovian domains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Meiying Cui & Dzung Nguyen & Michelle Patino Gaillez & Stephan Heiden & Weilin Lin & Michael Thompson & Francesco V. Reddavide & Qinchang Chen & Yixin Zhang, 2023. "Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Tobias Linder & Bert L de Groot & Anna Stary-Weinzinger, 2013. "Probing the Energy Landscape of Activation Gating of the Bacterial Potassium Channel KcsA," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-9, May.
    8. Shana Bergman & Rosemary J. Cater & Ambrose Plante & Filippo Mancia & George Khelashvili, 2023. "Substrate binding-induced conformational transitions in the omega-3 fatty acid transporter MFSD2A," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Kuang-Ting Ko & Frank Lennartz & David Mekhaiel & Bora Guloglu & Arianna Marini & Danielle J. Deuker & Carole A. Long & Matthijs M. Jore & Kazutoyo Miura & Sumi Biswas & Matthew K. Higgins, 2022. "Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Jian-Hua Wang & Yu-Liang Tang & Zhou Gong & Rohit Jain & Fan Xiao & Yu Zhou & Dan Tan & Qiang Li & Niu Huang & Shu-Qun Liu & Keqiong Ye & Chun Tang & Meng-Qiu Dong & Xiaoguang Lei, 2022. "Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Narjes Ansari & Valerio Rizzi & Michele Parrinello, 2022. "Water regulates the residence time of Benzamidine in Trypsin," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Hongjun Bai & Eric Lewitus & Yifan Li & Paul V. Thomas & Michelle Zemil & Mélanie Merbah & Caroline E. Peterson & Thujitha Thuraisamy & Phyllis A. Rees & Agnes Hajduczki & Vincent Dussupt & Bonnie Sli, 2024. "Contemporary HIV-1 consensus Env with AI-assisted redesigned hypervariable loops promote antibody binding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Do Hoon Kwon & Feng Zhang & Brett A. McCray & Shasha Feng & Meha Kumar & Jeremy M. Sullivan & Wonpil Im & Charlotte J. Sumner & Seok-Yong Lee, 2023. "TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Karain, Wael I., 2019. "Investigating large-amplitude protein loop motions as extreme events using recurrence interval analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 1-10.
    15. Tobias Sikosek & Heinrich Krobath & Hue Sun Chan, 2016. "Theoretical Insights into the Biophysics of Protein Bi-stability and Evolutionary Switches," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-27, June.
    16. Giacomo Janson & Gilberto Valdes-Garcia & Lim Heo & Michael Feig, 2023. "Direct generation of protein conformational ensembles via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Maciej Majewski & Adrià Pérez & Philipp Thölke & Stefan Doerr & Nicholas E. Charron & Toni Giorgino & Brooke E. Husic & Cecilia Clementi & Frank Noé & Gianni Fabritiis, 2023. "Machine learning coarse-grained potentials of protein thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Jochen S Hub & Bert L de Groot, 2009. "Detection of Functional Modes in Protein Dynamics," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31374-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.