IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0030938.html
   My bibliography  Save this article

SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners

Author

Listed:
  • Xinyi Liu
  • Bin Liu
  • Zhimin Huang
  • Ting Shi
  • Yingyi Chen
  • Jian Zhang

Abstract

Background: The molecular network sustained by different types of interactions among proteins is widely manifested as the fundamental driving force of cellular operations. Many biological functions are determined by the crosstalk between proteins rather than by the characteristics of their individual components. Thus, the searches for protein partners in global networks are imperative when attempting to address the principles of biology. Results: We have developed a web-based tool “Sequence-based Protein Partners Search” (SPPS) to explore interacting partners of proteins, by searching over a large repertoire of proteins across many species. SPPS provides a database containing more than 60,000 protein sequences with annotations and a protein-partner search engine in two modes (Single Query and Multiple Query). Two interacting proteins of human FBXO6 protein have been found using the service in the study. In addition, users can refine potential protein partner hits by using annotations and possible interactive network in the SPPS web server. Conclusions: SPPS provides a new type of tool to facilitate the identification of direct or indirect protein partners which may guide scientists on the investigation of new signaling pathways. The SPPS server is available to the public at http://mdl.shsmu.edu.cn/SPPS/.

Suggested Citation

  • Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.
  • Handle: RePEc:plo:pone00:0030938
    DOI: 10.1371/journal.pone.0030938
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030938
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0030938&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0030938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evangelia Petsalaki & Alexander Stark & Eduardo García-Urdiales & Robert B Russell, 2009. "Accurate Prediction of Peptide Binding Sites on Protein Surfaces," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-10, March.
    2. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    3. Benjamin A Shoemaker & Anna R Panchenko, 2007. "Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners," PLOS Computational Biology, Public Library of Science, vol. 3(4), pages 1-7, April.
    4. Doron Betel & Kevin E Breitkreuz & Ruth Isserlin & Danielle Dewar-Darch & Mike Tyers & Christopher W V Hogue, 2007. "Structure-Templated Predictions of Novel Protein Interactions from Sequence Information," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-7, September.
    5. Vishwanath R. Iyer & Christine E. Horak & Charles S. Scafe & David Botstein & Michael Snyder & Patrick O. Brown, 2001. "Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF," Nature, Nature, vol. 409(6819), pages 533-538, January.
    6. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilherme T Valente & Marcio L Acencio & Cesar Martins & Ney Lemke, 2013. "The Development of a Universal In Silico Predictor of Protein-Protein Interactions," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saket Navlakha & Anthony Gitter & Ziv Bar-Joseph, 2012. "A Network-based Approach for Predicting Missing Pathway Interactions," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-13, August.
    2. Yao Hongxing & Lu Yunxia, 2017. "Analyzing the Potential Influence of Shanghai Stock Market Based on Link Prediction Method," Journal of Systems Science and Information, De Gruyter, vol. 5(5), pages 446-461, October.
    3. Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    4. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    5. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.
    6. John E Reid & Lorenz Wernisch, 2014. "STEME: A Robust, Accurate Motif Finder for Large Data Sets," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    7. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    8. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    9. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    10. Nora Connor & Albert Barberán & Aaron Clauset, 2017. "Using null models to infer microbial co-occurrence networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    11. Aslan, Serpil & Kaya, Buket & Kaya, Mehmet, 2019. "Predicting potential links by using strengthened projections in evolving bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 998-1011.
    12. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    14. Amulyashree Sridhar & Sharvani GS & AH Manjunatha Reddy & Biplab Bhattacharjee & Kalyan Nagaraj, 2019. "The Eminence of Co-Expressed Ties in Schizophrenia Network Communities," Data, MDPI, vol. 4(4), pages 1-23, November.
    15. Li, Qing & Zhang, Huaige & Hong, Xianpei, 2020. "Knowledge structure of technology licensing based on co-keywords network: A review and future directions," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 154-165.
    16. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    17. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    18. Thorben Funke & Till Becker, 2019. "Stochastic block models: A comparison of variants and inference methods," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-40, April.
    19. Kan, Kees-Jan & van der Maas, Han L.J. & Levine, Stephen Z., 2019. "Extending psychometric network analysis: Empirical evidence against g in favor of mutualism?," Intelligence, Elsevier, vol. 73(C), pages 52-62.
    20. Shang, Ke-ke & Small, Michael & Yan, Wei-sheng, 2017. "Link direction for link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 767-776.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0030938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.