IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002235.html
   My bibliography  Save this article

Grid Cells, Place Cells, and Geodesic Generalization for Spatial Reinforcement Learning

Author

Listed:
  • Nicholas J Gustafson
  • Nathaniel D Daw

Abstract

Reinforcement learning (RL) provides an influential characterization of the brain's mechanisms for learning to make advantageous choices. An important problem, though, is how complex tasks can be represented in a way that enables efficient learning. We consider this problem through the lens of spatial navigation, examining how two of the brain's location representations—hippocampal place cells and entorhinal grid cells—are adapted to serve as basis functions for approximating value over space for RL. Although much previous work has focused on these systems' roles in combining upstream sensory cues to track location, revisiting these representations with a focus on how they support this downstream decision function offers complementary insights into their characteristics. Rather than localization, the key problem in learning is generalization between past and present situations, which may not match perfectly. Accordingly, although neural populations collectively offer a precise representation of position, our simulations of navigational tasks verify the suggestion that RL gains efficiency from the more diffuse tuning of individual neurons, which allows learning about rewards to generalize over longer distances given fewer training experiences. However, work on generalization in RL suggests the underlying representation should respect the environment's layout. In particular, although it is often assumed that neurons track location in Euclidean coordinates (that a place cell's activity declines “as the crow flies” away from its peak), the relevant metric for value is geodesic: the distance along a path, around any obstacles. We formalize this intuition and present simulations showing how Euclidean, but not geodesic, representations can interfere with RL by generalizing inappropriately across barriers. Our proposal that place and grid responses should be modulated by geodesic distances suggests novel predictions about how obstacles should affect spatial firing fields, which provides a new viewpoint on data concerning both spatial codes. Author Summary: The central problem of learning is generalization: how to apply what was discovered in past experiences to future situations, which will inevitably be the same in some respects and different in others. Effective learning requires generalizing appropriately: to situations which are similar in relevant respects, though of course the trick is determining what is relevant. In this article, we quantify and investigate relevant generalization in the context of a particular learning problem often studied in the laboratory: learning to navigate in a spatial maze. In particular, we consider whether the brain's well-characterized systems for representing an organism's location in space generalize appropriately for this task. Our simulations of learning verify that to generalize effectively, these representations should treat nearby locations similarly (that is, neurons should fire similarly when an animal occupies nearby locations)—but, more subtly, that to enable successful learning, “nearby” must be defined in terms of paths around obstacles, rather than in absolute space “as the crow flies.” These considerations suggest new principles for understanding these spatial representations and why they appear warped and distorted in environments, such as mazes, with barriers and obstacles.

Suggested Citation

  • Nicholas J Gustafson & Nathaniel D Daw, 2011. "Grid Cells, Place Cells, and Geodesic Generalization for Spatial Reinforcement Learning," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-14, October.
  • Handle: RePEc:plo:pcbi00:1002235
    DOI: 10.1371/journal.pcbi.1002235
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002235
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002235&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.