IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924012571.html
   My bibliography  Save this article

Synergistic fusion of physical modeling and data-driven approaches for parameter inference to enzymatic biodiesel production system

Author

Listed:
  • Chen, Yu
  • Yu, Hui
  • Liu, Chengjie
  • Xie, Jin
  • Han, Jun
  • Dai, Houde

Abstract

Enzymatic biodiesel production systems represent complex chemical dynamical processes that traditional modeling approaches struggle to effectively capture the inherent nonlinearity and dynamics. We propose a novel framework that fuses prior physical knowledge and data-driven methods to enhance parameter inference capabilities for such systems. Grounded in the concept of physics-informed machine learning (PIML), we combine the prior knowledge from traditional physical models with the powerful approximation abilities of data-driven neural networks. This framework enables the physical laws to guide the training of the data-driven model while utilizing data to correct model biases, achieving tight integration of physical constraints and data-driven approaches in the modeling process. To address potential challenges faced by PIML methods in practical applications, such as multiscale features and violations of time causality, we introduce several improved strategies. Evaluating our framework on real experimental data from biodiesel production, we validate its accurate estimation of system parameters. This work provides a promising new approach to enhance the interpretability and generalization of data-driven modeling by incorporating prior physical knowledge, holding potential applications in modeling and control of complex dynamical systems.

Suggested Citation

  • Chen, Yu & Yu, Hui & Liu, Chengjie & Xie, Jin & Han, Jun & Dai, Houde, 2024. "Synergistic fusion of physical modeling and data-driven approaches for parameter inference to enzymatic biodiesel production system," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012571
    DOI: 10.1016/j.apenergy.2024.123874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924012571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.