IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v188y2022ics0047259x21000907.html
   My bibliography  Save this article

A slice of multivariate dimension reduction

Author

Listed:
  • Cook, R. Dennis

Abstract

We describe how many dimension reduction strategies are connected conceptually and philosophically, paving the way for a unified approach to multivariate dimension reduction in statistics. Specific methods covered include envelopes, sufficient dimension reduction methods like SIR and SAVE, principal components, principal fitted components, and partial least squares.

Suggested Citation

  • Cook, R. Dennis, 2022. "A slice of multivariate dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21000907
    DOI: 10.1016/j.jmva.2021.104812
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000907
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiangrong Yin & R. Dennis Cook, 2002. "Dimension reduction for the conditional kth moment in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 159-175, May.
    2. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    3. Artemiou, Andreas & Li, Bing, 2013. "Predictive power of principal components for single-index model and sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 176-184.
    4. R. D. Cook & I. S. Helland & Z. Su, 2013. "Envelopes and partial least squares regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 851-877, November.
    5. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    6. Li, Baibing & Hassel, Per A. & Morris, A. Julian & Martin, Elaine B., 2005. "A non-linear nested partial least-squares algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 87-101, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cook, R. Dennis & Forzani, Liliana & Liu, Lan, 2023. "Partial least squares for simultaneous reduction of response and predictor vectors in regression," Journal of Multivariate Analysis, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.
    2. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    3. S. Yaser Samadi & Tharindu P. De Alwis, 2023. "Fourier Methods for Sufficient Dimension Reduction in Time Series," Papers 2312.02110, arXiv.org.
    4. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    5. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    6. Dong, Yuexiao & Yu, Zhou, 2012. "Dimension reduction for the conditional kth moment via central solution space," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 207-218.
    7. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    8. Sabrina Duarte & Liliana Forzani & Pamela Llop & Rodrigo GarcĂ­a Arancibia & Diego Tomassi, 2023. "Socioeconomic Index for Income and Poverty Prediction: A Sufficient Dimension Reduction Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(2), pages 318-346, June.
    9. Cook, R. Dennis & Forzani, Liliana & Liu, Lan, 2023. "Partial least squares for simultaneous reduction of response and predictor vectors in regression," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    10. Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
    11. Ekvall, Karl Oskar, 2022. "Targeted principal components regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    12. Zeng, Bilin & Yu, Zhou & Wen, Xuerong Meggie, 2015. "A note on cumulative mean estimation," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 322-327.
    13. Park, Yujin & Kim, Kyongwon & Yoo, Jae Keun, 2022. "On cross-distance selection algorithm for hybrid sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    14. Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    16. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    17. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    18. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    19. Dennis Cook, R. & Forzani, Liliana, 2023. "On the role of partial least squares in path analysis for the social sciences," Journal of Business Research, Elsevier, vol. 167(C).
    20. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21000907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.